The equation `2cos^2(x/2)sin^2x=x^2+x^(-2);0 <= x <=pi/2` has
Text Solution
Verified by Experts
The given equation is `2 cos^(2) (x/2) sin^(2) x=x^(2) +1/x^(2)` where `0 lt x le pi/2` `LHS=2 cos^(2) (x/2) sin^(2) x=(1+cos x) sin^(2)x` `:' 1+cos x lt 2 and sin^(2) x le 1` for `0 lt x lt pi/2` `:. (1+ cos x) sin^(2) x lt 2` Also, `R.H.S.=x^(2) +1/x^(2) ge 2`
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|4 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Solve the equation sin^4x+cos^4x-2sin^2x+(3sin^2 2x)/4=0
Solve the equation 2(cos x+cos2x)+sin2x(1+2cos x)=2sinx for (-pilt=xlt=pi)
The number of distinct real roots of the equation sin^(3)x +sin^(2)x sin x-sin x- sin 2x-2cos x=0 belonging to the interval (-(pi)/(2),(pi)/(2))
Find the number of solution of the equation sqrt(cos 2x+2)=(sin x + cos x) in [0, pi] .
(cos2x)/(sin ^(2) x cos^(2) x)
The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if
The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if
Find common roots of the equations 2sin^2x+sin^2 2x=2a n dsin2x+cos2x=tanxdot
The number of solutions of the equation cos^2(x+pi/6)+cos^2x-2cos(x+pi/6)dotcospi/6=sin^2pi/6 in interval ((-pi)/2,pi/2) is_________
The number of distinct solutions of the equation 5/4cos^(2)2x + cos^4 x + sin^4 x+cos^6x+sin^6 x =2 in the interval [0,2pi] is
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)