`16^(sin^(2)x)+16^(1-sin^(2) x)=10` If `16^(sin^(2)x)=t`, then `t+16/t=10` Then Eq. (i) becomes `t^(2)-10t+16=0` or `t=2, 8` `rArr 16^(sin^(2) x)=16^(1//4)` or `16^(3//4)` `rArr sin x= pm 1/2, pm sqrt(3)/2` Now `sin x=1/2`, then `x=pi/6, (5pi)/6` `sin x=-1/2`, then `x=(7pi)/6` or `(11pi)/6` `sin x= sqrt(3)/2`, then `x=pi/3, (2pi)/3` `sin x= - sqrt(3)/2`, then `x=(4pi)/3, (5 pi)/3` Hence, there will be eight solutions in all.
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|4 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Solve: 16^(sin^(2)x) +16^(cos^(2)x)=10 ,0lt=x<2pi
Solve sin^2 2x - 2cos^2 x =0
Solve 2 sin^(3) x=cos x .
Solve 4 cos^(2)x+6 sin^(2)x=5 .
Solve : log_(x^(2)16+log_(2x)64=3 .
Solve log_(|sin x|) (1+cos x)=2 .
f'(sin^(2)x)lt f'(cos^(2)x) for x in
Solve 7 cos^(2)x+sin x cos x-3=0 .
Evaluate: int(dx)/(9+16sin^2x)
sin^(10)x+cos^(10)x=29/16cos^4 2x
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)