Home
Class 12
MATHS
Solve: 16^sin^(2x)16^cos^(2x)=10 ,0lt=x<...

Solve: `16^sin^(2x)16^cos^(2x)=10 ,0lt=x<2pi`

Text Solution

Verified by Experts

`16^(sin^(2)x)+16^(1-sin^(2) x)=10`
If `16^(sin^(2)x)=t`, then `t+16/t=10`
Then Eq. (i) becomes
`t^(2)-10t+16=0`
or `t=2, 8`
`rArr 16^(sin^(2) x)=16^(1//4)` or `16^(3//4)`
`rArr sin x= pm 1/2, pm sqrt(3)/2`
Now `sin x=1/2`, then `x=pi/6, (5pi)/6`
`sin x=-1/2`, then `x=(7pi)/6` or `(11pi)/6`
`sin x= sqrt(3)/2`, then `x=pi/3, (2pi)/3`
`sin x= - sqrt(3)/2`, then `x=(4pi)/3, (5 pi)/3`
Hence, there will be eight solutions in all.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.1|12 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.2|6 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve: 16^(sin^(2)x) +16^(cos^(2)x)=10 ,0lt=x<2pi

Solve sin^2 2x - 2cos^2 x =0

Solve 2 sin^(3) x=cos x .

Solve 4 cos^(2)x+6 sin^(2)x=5 .

Solve : log_(x^(2)16+log_(2x)64=3 .

Solve log_(|sin x|) (1+cos x)=2 .

f'(sin^(2)x)lt f'(cos^(2)x) for x in

Solve 7 cos^(2)x+sin x cos x-3=0 .

Evaluate: int(dx)/(9+16sin^2x)

sin^(10)x+cos^(10)x=29/16cos^4 2x