Find the number of solution of the equation `e^(sinx)-e^(-sinx)-4=0`
Text Solution
Verified by Experts
Put `e^(sin x)=t` `rArr t^(2)-4t-1=0` `rArr t=e^(sin x)=2 pm sqrt(5)` Now `sin x in [-1, 1]`. Thus, `e^(sin x) in [e^(-1), e^(1)]` and `2 pm sqrt(5) notin [e^(-1), e^(1)]` Hence, there does not exist any solution.
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|4 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Find the number of solutions of the equation sinx=x^2+x+1.
Find the number of solutions of sinx=x/(10)
Find the number of solution of the equation 1+e^(cot^2 x )=sqrt(2|sinx|-1)+(1-cos2x)/(1+sin^4x) for x in (0,5pi)dot
If m and n(n > m) are positive integers, then find the number of solutions of the equation n|sinx|=m|cosx|' for x in [0,2pi]dot Also find the solution.
The number of solution of the equation e^(2 x) + e^x+e^-(2 x)+ e^(-x)=3(e^(-2 x) + e^x) is
The number of solution(s) of the equation sinx = log_(10) x is/are
Number of solution(s) satisfying the equation 1/(sinx)-1/(sin2x)=2/(sin4x) in [0,4pi] equals 0 (b) 2 (c) 4 (d) 6
Find the number of solutions of sin^2x-sinx-1=0in[-2pi,2pi]
Number of solution(s) of the equation (sinx)/(cos3x)+(sin3x)/(cos9x)+(sin9x)/(cos27x)=0 in the interval (0,pi/4) is____________
Number of solutions of the equation sin^4x-cos^2xsinx+2sin^2x+sinx=0in0lt=xlt=3pi is_____
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)