find all the possible triplets `(a_(1), a_(2), a_(3))` such that `a_(1)+a_(2) cos (2x)+a_(3) sin^(2) (x)=0` for all real x.
Text Solution
Verified by Experts
We have `a_(1)+a_(2) cos (2x) +a_(3) sin^(2) x=0` for all real x `:. a_(1)+a_(2) (1-2 sin^(2) x)+a_(3) sin^(2) x=0` `rArr (a_(1)+a_(2))+(-2a_(2)+a_(3)) sin^(2) x=0` Since this is true for all real x, we must have `a_(!)+a_(2)=0` and `-2a_(2)+a_(3)=0` `:. a_(2)=-a_(1)` and `a_(3)= -2a_(1)` Thus, there exists infinite triplets `(a_(1), -a_(1), -2a_(1))`
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|4 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
a_(1), a_(2),a_(3) in R - {0} and a_(1)+ a_(2)cos2x+ a_(3)sin^(2)x=0 " for all x in R then
Let a_(1), a_(2), a_(3), a_(4) be in A.P. If a_(1) + a_(4) = 10 and a_(2)a_(3) = 24 , them the least term of them is
If a_(1),a_(2),a_(3),…. are in A.P., then a_(p),a_(q),q_(r) are in A.P. if p,q,r are in
If the sequence a_(1),a_(2),a_(3),…,a_(n) is an A.P., then prove that a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-a_(4)^(2)+…+a_(2n-1)^(2)-a_(2n)^(2)=n/(2n-1)(a_(1)^(2)-a_(2n)^(2))
Find the respective terms for the following Aps: (i) a_(1) =2, a_(3) = 26 find a_(2) (ii) a_(2) =13, a_(4) = 3 find a_(1), a_(3) (iii) a_(1) =5, a_(4) = -22 find a_(1),a_(3),a_(4),a_(5)
If a_(1),a_(2),a_(3), ……….. Are in A.P. such that a_(4)/a_(7) = 3/2 , then the 13^(th) term of the A.P. is …………..
Prove that (a_(1)^(m)+a_(2)^(m)+….+a_(n)^(m))/(n)lt(a_(1)+a_(2)+..+a_(n))/(n)^(m) If 0ltmlt1 and a_(i)gt0 for all I.
Let A=[a_("ij")]_(3xx3) be a matrix such that A A^(T)=4I and a_("ij")+2c_("ij")=0 , where C_("ij") is the cofactor of a_("ij") and I is the unit matrix of order 3. |(a_(11)+4,a_(12),a_(13)),(a_(21),a_(22)+4,a_(23)),(a_(31),a_(32),a_(33)+4)|+5 lambda|(a_(11)+1,a_(12),a_(13)),(a_(21),a_(22)+1,a_(23)),(a_(31),a_(32),a_(33)+1)|=0 then the value of lambda is
The number of increasing function from f : AtoB where A in {a_(1),a_(2),a_(3),a_(4),a_(5),a_(6)} , B in {1,2,3,….,9} such that a_(i+1) gt a_(i) AA I in N and a_(i) ne i is
If a_(1), a_(2), a_(3), ……. , a_(n) are in A.P. and a_(1) = 0 , then the value of (a_(3)/a_(2) + a_(4)/a_(3) + .... + a_(n)/a_(n - 1)) - a_(2)(1/a_(2) + 1/a_(3) + .... + 1/a_(n - 2)) is equal to
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)