We have `4 cos theta-3 sec theta = tan theta` or `4 cos theta-3/(cos theta)= (sin theta)/(cos theta)` or `4 cos^(2) theta-3= sin theta` or `4(1- sin^(2) theta)-3= sin theta` or `4 sin^(2) theta + sin theta-1=0` or `sin theta=(-1 pm sqrt(1+16))/8=(-1 pm sqrt(17))/8` Now, `sin theta=(-+sqrt(17))/8`. Thus, `sin theta=sin alpha`, where `sin alpha=(-1+sqrt(17))/8` `rArr theta=n pi +(-1)^(n) alpha`, where `sin alpha =(-1 + sqrt(17))/8 and n in Z` Also, `sin theta=(-1-sqrt(17))/8` `rArr sin theta= sin beta`, where `sin beta=(-1-sqrt(17))/8` `rArr theta=n pi +(-1)^(n) beta, n in Z` where `sin beta =(-1-sqrt(17))/8`
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|4 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Solve sec 4 theta- sec 2 theta=2 .
Solve cos 4 theta+ sin 5 theta=2 .
Prove the following: (sin theta - cos theta + 1 )/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)
Prove that (sin theta -cos theta+1 )/( sin theta + cos theta -1) =(1)/( sec theta -tan theta ) [use the identity sec ^(2) theta =1 +tan ^(2) theta ]
Show that (1)/( cos theta ) -cos theta =tan theta .sin theta
Solve tan 3 theta=-1 .
Prove that (tan theta+sec theta-1)/(tan theta-sec theta+1)=(1+sin theta)/(cos theta)
Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)