The equation is meaningful if `sin x le 5/2` which is always true. Any x for which `sin x lt 1/6` cannot be solution, since `sqrt(5-2 sin x gt 0)` for all x. On squaring the equation, we get `5-2 sin x =36 sin^(2) x-12 sin x+1` or `18 sin^(2) x-5x-2=0` `:. (9 sin x+2)(2 sin x-1)=0` `:. sin x=-2/9 or sin x=1/2` But `sin x=-2/9` is not possible `" "( :' sin x lt 1/6" is not possible")` `:. sin x=1/2` `rArr x=n pi +(-1)^(n) pi/6, n in Z`
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|4 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Solve sqrt(5-2 sin x)=6 sin x-1
Solve (sqrt(5)-1)/(sinx)+(sqrt(10+2sqrt(5)))/(cosx)=8,x in (0,pi/2)
Solve: (xcosx-sinx)dx=x/ysinxdy
Solve sqrt(5x^2-6x+8)-sqrt(5x^2-6x-7)=1.
Answer the equation: intsqrt((1-sinx)/(1+sinx))dx .
Solve sin7x = sinx
y = cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))),find dy/dx.
Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)
Find the rang of f(x)=sqrt(sin^2x-6sinx+9)+3
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)