Changing all the values in terms of `cos theta`, we get `5(2 cos^(2) theta-1)+(1+cos theta)+1=0` or `10 cos^(2) theta+cos theta-3=0` or `(5 cos theta+3) (2 cos theta-1) =0` `rArr cos theta=1/2, (-3)/5` `rArr theta=pi/3, - pi/3, cos^(-1) (-3/5)= pi- cos^(-1) 3/5` and `-pi + cos^(-1) 3/5" "[ :' -pi lt theta lt pi]`
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|4 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Solve : 5cos2theta+2cos^2(theta/2)+1=0,-pi lt theta lt pi
Solve 7cos^2theta+3sin^2theta=4
Solve 3sin^2 theta -cos^2 theta=0
Solve 3 cos^(2) theta=sin^(2) theta
Solve sin^(2) theta-2 cos theta+1/4=0
Solve sin 2 theta+cos theta=0 .
Solve cos 4 theta+ sin 5 theta=2 .
Solve 2 cos^(2) theta+3 sin theta=0
Solve : 2 cos^(2)theta + sin theta le 2 , where pi//2 le theta le 3pi//2.
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)