We have `sqrt(3) sin x = 2 (cos x + cos^(2) x)` ...(i) Squaring both sides, we get `3 sin^(2) x=4(cos^(2)x+cos^(4)x+2 cos^(3) x)` or `3(1-cos^(2)x)=4 cos^(2)x+4 cos^(4) x+8 cos^(3) x`. or `4 cos^(4) x+8 cos^(3) x+7 cos^(2) x-3 =0` or `(cos x+1)(2 cos x-1) (2 cos^(2) x+3 cos x+3)=0` For `cos x=-1, x=(2n+1) pi, n in Z` Clearly, `cos x=-1` satisfies eq. (i). Now, `cos x=1/2` Clearly, for `cosx=1/2` from eq. (i), `sin x=sqrt(3)/2` So, x lies in `1^(st)` quadrant. `:. x=2npi +pi/3, n in Z`
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|4 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Solve the equation sqrt(|sin^(-1)|"cosx"||+|cos^(-1)|sinx||)=sin^(-1)|cosx|-cos^(-1)|sinx|,(-pi)/2lt=xlt=pi/2dot
Solve the equation sqrt3cos x + sin x = sqrt2 .
Solve the equation: cos^2[pi/4(sinx+sqrt(2)cos^2x)]-tan^2[x+pi/4tan^2x]=1
Solve sqrt3 sin x+cos x=2
The number of solution of the equation |2sinx-sqrt(3)|^(2cos^2 x-3cosx+1)=1in[0,pi] is 2 (b) 3 (c) 4 (d) 5
Solve the equation 2(cos x+cos2x)+sin2x(1+2cos x)=2sinx for (-pilt=xlt=pi)
The smallest positive value of x (in radians) satisfying the equation (log)_(cosx)((sqrt(3))/2sinx)=2-(log)_(secx)(tanx) is (a) pi/(12) (b) pi/6 (c) pi/4 (d) pi/3
Solve the equations: 2 cos^(2)x - 7 cos x + 3 = 0
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)