Solve `(tan^(2) x+2sqrt(3) tan x+7) (cot^(2) y-2 sqrt(3) cot y+8) le 20` for x and y.
Text Solution
Verified by Experts
We have `((tan x + sqrt(3))^(2)+4)((cot y-sqrt(3))^(2)+5) le 20` Now, `L.H.S. ge 20`. Therefore, we must have `(tan x+sqrt(3))^(2)=0 and (cot y-sqrt(3))^(2)=0` `rArr tan x=-sqrt(3) and cot y=sqrt(3)` `rArr tan x=-sqrt(3) and tan y=1/sqrt(3)` `rArr x=n pi-pi/3, n in Z` and `y=mpi+pi/6, m in Z`
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|4 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Solve sqrt(x-2) le 3
cot^(2) x + tan^(2) x
Solve (tan 3x - tan 2x)/(1+tan 3x tan 2x)=1 .
Solve tan^(-1) x + cot^(-1) (-|x|) = 2 tan^(-1) 6x
Solve tan theta+tan 2 theta+sqrt(3) tan theta tan 2 theta = sqrt(3) .
Solve cos ( sin^(-1)((x)/(sqrt(1+x^2))))= sin { cot^(-1) (3/4)}
Solve: tan 2x = - cot (x + (pi)/(3)) .
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)