Solve `2 sin^(2) x-5 sin x cos x -8 cos^(2) x=-2`.
Text Solution
Verified by Experts
If `cos x=0`, then `2 sin^(2) x=-2 or sin^(2) x=-1`, which is not possible. Clearly, `cos x ne 0` Now, `2 sin^(2) x-5 sin x cos x -8 cos^(2) x=-2` Dividing both sides by `cos^(2)x`, we get `2 tan^(2) x-5 tan x-8=-2 sec^(2) x` or `2 tan^(2) x-5 tan x-8+2 (1+ tan^(2) x)=0` or `4 tan^(2) x-5 tan x-6=0` or `(tan x-2) (4 tan x+3)=0` Now, `tan x-2 =0` Let `tan x=2=tan alpha` `rArr x=npi +alpha = npi +tan^(-1) 2, n in Z` or `4 tan x+3=0` `rArr tan x=-3/4 = tan beta` (let) `rArr x=mpi + tan^(-1) (-3/4)`, where `m in Z`
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|4 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
General solution of sin^(2) x-5 sin x cos x -6 cos^(2)x=0 is
Solve 2sin^(2)x-5sinxcosx-8cos^2x=-2
Solve 7 cos^(2)x+sin x cos x-3=0 .
Solve 2 sin^(3) x=cos x .
Solve sin x+cos x=1 +sin x cos x
Solve sin^2 2x - 2cos^2 x =0
Solve 2 cos ^2 x + 3 sin x=0
Solve sin x-3 sin 2x+sin 3x=cos x-3 cos 2x+cos 3x
The number of integers in the range of 3 sin^(2)x+3sin x cos x+7cos^(2)x is
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)