Home
Class 12
MATHS
the least positive value of x satisfying...

the least positive value of x satisfying (sin^2 2x + 4 sin^4 x - 4 sin^2x cos^2x)/(4-sin^2(2x)-4sin^2 x)= 1/9 is

Text Solution

Verified by Experts

We have
`(sin^(2) 2x+4 sin^(4) x-4 sin^(2) x cos^(2) x)/(4-4 sin^(2) x- sin^(2) 2x)=1/9`
`rArr (4 sin^(4)x)/(4 cos^(2) x-4 sin^(2) x cos^(@) x)=1/9`
`rArr sin^(4) x/cos^(4) x=1/9`
`rArr tan^(2) x=(1/sqrt(3))^(2)=("tan"pi/6)^(2)`
`rArr x=n pi pm pi/6`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.1|12 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.2|6 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

e^(-4x) sin 2 x

Solve sin 2x - sin 4x + sin 6x =0.

Solve sin^2x +1/4sin^2 3x=sinxsin^2 3x

Solve sin^2(x1)/4sin^2 3x=sinxsin^2 3x

Solve the equation sin^2 x - 5 sin x + 4 = 0

sin ^(2) 6x - sin ^(2) 4x = sin 2x sin 10x

Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x )

(3 + 4 cos x)/( sin^(2) x )

cos 4x =1- 8 sin ^(2) x cos ^(2) x

sin 3 x + 2 csin 4x + sin 6x = 4 cos ^(2) x sin 4x