We have, `sqrt(3) cos x + sin x=sqrt(2)` ...(1) Dividing both sides by `sqrt((sqrt(3))^(2)+1^(2))=2`, we get `sqrt(3)/2 cos x+1/2 sin x=1/sqrt(2)` `rArr cos(x-pi/6)=1/sqrt(2)` `rArr cos(x-pi/6)="cos" pi/4` `rArr x-pi/6=2n pi pm pi/4, n in Z` `rArr x= 2n pi pm pi/4+pi/6` `rArr x=2npi +pi/4+pi/6 or x=2npi - pi/4+pi/6` `rArr x=2n pi +(5 pi)/12 or x=2npi-pi/12`, where `n in Z`
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|4 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Solve the equations: sin 5x - sin x = cos 3x
Find the number of solution of the equation sqrt(cos 2x+2)=(sin x + cos x) in [0, pi] .
Solve the equation sqrt(6 - 4x - x^(2)) = x + 4
Solve the equation (sqrt(3))/2sinx-cosx=cos^2x
The number of solution (s) of the equation sqrt2+cos 2 x=(sin x+cos x) in [-pi/2, pi]
Solve the equations: sin theta + cos theta = sqrt(2)
Solve the equations: sin theta + sqrt(3) cos theta = 1
The number of real solution of the equation sqrt(1+cos2x)=sqrt2 sin^(-1)(sinx),-piltxltpi"is"
Number of solutions of the equation sin x + cos x-2sqrt(2) sin x cos x=0 for x in [0, pi] is
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)