If `x , y in [0,2pi]`
, then find the total number of ordered pairs `(x , y)`
satisfying the equation `sinxcosy=1`
Text Solution
Verified by Experts
`sin x cos y=1` `rArr sin x=1, cos y=1 or sin x=-1, cos y =-1` If `sin x=1. cos y=1`, hence, `x=pi//2, y=0, 2pi` If `sin x=-1, cos y =-1`, hence, `x=3pi//2, y=pi` Thus, the possible ordered ordered pairs are `(pi/2, 0), (pi/2, 2pi)` and `((3pi)/2, pi)`.
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|4 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
If x, y in [0,2pi] then find the total number of order pair (x,y) satisfying the equation sinx .cos y = 1
If x in (0,2pi)a n dy in (0,2pi) , then find the number of distinct ordered pairs (x , y) satisfying the equation 9cos^2x+sec^2y-6cosx-4secy+5=0
Number of ordered pairs (a, x) satisfying the equation sec^2(a+2)x+a^2-1=0;-pi < x< pi is
If x lt 4 " and " x, y in {1, 2, 3, .., 10} , then find the number of ordered pairs (x,y).
The total number of ordered pairs (x , y) satisfying |x|+|y|=2,sin((pix^2)/3)=1, is equal to a)4 b)6 c)10 d)12
Total number of ordered pairs (x, y) satisfying Iyl=cosxandy=sin−1(sinx) where |x|≤3π is equal to
For 0ltx ,yltpi, the number of ordered pairs (x, y) satisfying system equations cot^2(x-y)-(1+sqrt(3))cot(x-y)+sqrt(3)="0 and cosy="(sqrt(3))/2 is
Find the number ordered pairs (x ,y)ifx ,y in {0,1,2,3, , 10}a n dif|x-y|> 5.
The number of ordered pair (x, y) satisfying the equation sin^(2) (x+y)+cos^(2) (x-y)=1 which lie on the circle x^(2)+y^(2)=pi^(2) is _________.
Find the number of positive integral solutions satisfying the equation (x_1+x_2+x_3)(y_1+y_2)=77.
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)