Solve `sin^2x+cos^2y=2sec^2z`
for `x , y ,a n dzdot`
Text Solution
Verified by Experts
`L.H.S. = sin^(2)x+cos^(2) y le 2" "[ :' sin^(2)x le and cos^(2) y le 1]` `R.H.S.=2 sec^(2) z ge 2` Hence, `L.H.S.=R.H.S.` only when `sin^(2) x=1`, `cos^(2) y=1, and 2 sec^(2) z=2`. Thus, `cos^(2) x=0, sin^(2) y=0, cos^(2) z=1` `rArr cos x=0, sin y=0, sin z =0` `x=(2m+1) pi/2, y = n pi` and `z=tpi`, where `m, n t in Z`.
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|4 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Solve y'=sin^(2)(x-y+1)
Let x ,y ,z in R such that x+y+z=6a nd x y+y z+z x=7. Then find the range of values of x ,y ,a n dzdot
Solve 2 sin^(2) x-5 sin x cos x -8 cos^(2) x=-2 .
Suppose that for some angles xa n dy , the equations sin^2x+cos^2y=(3a)/2a n dcos^2x+sin^2y=(a^2)/2 hold simultaneously. the possible value of a is ___________
Solve x+y+z=2 2x+y-z=6 3x+2y+2z=6
If f(x , y) satisfies the equation 1+4x-x^2=sqrt(9sec^2y+4cos e c^2y) then find the value of xa n dtan^2ydot
For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of x + y + z is equal to
Show that sin(x+y)sin(x-y)= sin^2 x -sin^2 y .Hence prove that sin(x+y)sin(x-y)+sin(y+z)sin(y-z) +sin(z+x)sin(z-x)=0
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)