`1+sin x "sin"^(2) x/2=0` or `2+2 sin x "sin"^(2) x/2=0` or `2+sin x(1- cos x)=0` or `4+2 sin x - sin 2x=0` or `sin 2x=2 sin x+4` The above result is not possible for any value of x as L.H.S. has maximum value 1 and R.H.S. has minimum value 2. Hence, there is no solution.
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|4 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Solve sin^2(x1)/4sin^2 3x=sinxsin^2 3x
Solve sin^2x +1/4sin^2 3x=sinxsin^2 3x
Solve (x^2-2x-3)/(x+1)=0.
Solve |(x-1,2),(3,x-2)|=0
Solve (x-1)^2(x+4)<0
Solve (x^2-4)sqrt(x^2-1)<0.
Solve the equation x^(2)+1=0 .
Solve sin^2 2x - 2cos^2 x =0
Solve sin x tan x -sin x+ tan x-1=0 for x in [0, 2pi] .
Solve 2x^(2)-sqrt(3)x+2=0 .
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)