The equation `cos 4theta+ sin 5 theta=2` is valid only when `cos 4 theta=1` and `sin 5 theta=1`. Thus, `4 theta=2npi and 5 theta=2m pi+pi//2, n , m in Z` `rArr theta=(2n pi)/4 and theta=(2m pi)/5+pi/10, n, m in Z` Putting n, `m=0, pm 1, pm 2`, ..., the common value in `[0, 2pi]` is `theta=pi//2`. Therefore, the solution is `theta=2k pi+pi//2, k in Z`.
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|4 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Solve cos4theta+sin5theta=2
Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .
Solve 2 cos^(2) theta+3 sin theta=0
Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .
Solve 7cos^2theta+3sin^2theta=4
Solve sin 6 theta=sin 4 theta-sin 2 theta .
The expression cos 3 theta + sin 3 theta + (2 sin 2 theta-3) (sin theta- cos theta) is positive for all theta in
Solve : 2 cos^(2)theta + sin theta le 2 , where pi//2 le theta le 3pi//2.
Solve sin 3 theta-sin theta=4 cos^(2) theta-2 .
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)