Solve for `xa n dy :sqrt(3)sinx+cosx=8y-y^2-18 ,w h e r e0lt=xlt=4pi, y in R`
Text Solution
Verified by Experts
R.H.S. `8y-y^(2)-18=-[y^(2)-8y]-18` `=-[(y-4)^(2)-16]-18` `=-2-(y-4)^(2)` `:. R.H.S. le -2` whereas `L.H.S. ge -2` `:.` Equality is possible only when `L.H.S.=R.H.S.=-2` Now, for `L.H.S., 2 cos (x-pi//3)=-2` `:. cos (x-pi//3)=-1` `:. x-pi//3=pi or 3pi` `:. x=4pi//3, 10 pi//3` For `R.H.S.=-2, y=4`.
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|4 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Solve for x and y 12sinx-2y^2=21-8y-5 cosx
Show that 2sinx+tanxgeq3x ,w h e r e0lt=x
The vertices of a triangle are (0,0), (x ,cosx), and (sin^3x ,0),w h e r e0ltxltpi/2 the maximum area for such a triangle in sq. units is (a) (3sqrt(3))/(32) (b) (sqrt(3)/32) (c) 4/32 (d) (6sqrt(3)) /(32)
If f(x)=x/(sinx)a n dg(x)=x/(tanx),w h e r e0ltxlt=1, then in this interval
Find (dy)/(dx) for the function: y=(log)_esqrt((1+sinx)/(1-sinx)),w h e r ex=pi/3
If the complex numbers xa n dy satisfy x^3-y^3=98 ia n dx-y=7i ,t h e nx y=a+i b ,w h e r ea ,b , in Rdot The value of (a+b)//3 equals ______.
Which of the following is/are true? (dy)/(dx)fory=sin^(-1)(cosx),w h e r ex in (0,pi),i s-1 (dy)/(dx)fory=sin^(-1)(cosx),w h e r ex in (0,2pi),i s1 (dy)/(dx)fory=cos^(-1)(sinx),w h e r ex in (-pi/2,pi/2),i s-1 (dy)/(dx)fory=cos^(-1)(sinx),w h e r ex in (pi/2,(3pi)/2),i s-1
Solve the equation x^2-x+1=1/2+sqrt(x-3/4),w h e r exgeq3/4dot
If y=sqrt(log{sin((x^2)/3-1)}) , t h e n find (dy)/(dx)dot
Prove that the curves y=f(x),[f(x)>0],a n dy=f(x)sinx ,w h e r ef(x) is differentiable function, have common tangents at common points.
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)