Home
Class 12
MATHS
Solve for xa n dy :sqrt(3)sinx+cosx=8y-y...

Solve for `xa n dy :sqrt(3)sinx+cosx=8y-y^2-18 ,w h e r e0lt=xlt=4pi, y in R`

Text Solution

Verified by Experts

R.H.S. `8y-y^(2)-18=-[y^(2)-8y]-18`
`=-[(y-4)^(2)-16]-18`
`=-2-(y-4)^(2)`
`:. R.H.S. le -2`
whereas `L.H.S. ge -2`
`:.` Equality is possible only when `L.H.S.=R.H.S.=-2`
Now, for `L.H.S., 2 cos (x-pi//3)=-2`
`:. cos (x-pi//3)=-1`
`:. x-pi//3=pi or 3pi`
`:. x=4pi//3, 10 pi//3`
For `R.H.S.=-2, y=4`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.1|12 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.2|6 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve for x and y 12sinx-2y^2=21-8y-5 cosx

Show that 2sinx+tanxgeq3x ,w h e r e0lt=x

The vertices of a triangle are (0,0), (x ,cosx), and (sin^3x ,0),w h e r e0ltxltpi/2 the maximum area for such a triangle in sq. units is (a) (3sqrt(3))/(32) (b) (sqrt(3)/32) (c) 4/32 (d) (6sqrt(3)) /(32)

If f(x)=x/(sinx)a n dg(x)=x/(tanx),w h e r e0ltxlt=1, then in this interval

Find (dy)/(dx) for the function: y=(log)_esqrt((1+sinx)/(1-sinx)),w h e r ex=pi/3

If the complex numbers xa n dy satisfy x^3-y^3=98 ia n dx-y=7i ,t h e nx y=a+i b ,w h e r ea ,b , in Rdot The value of (a+b)//3 equals ______.

Which of the following is/are true? (dy)/(dx)fory=sin^(-1)(cosx),w h e r ex in (0,pi),i s-1 (dy)/(dx)fory=sin^(-1)(cosx),w h e r ex in (0,2pi),i s1 (dy)/(dx)fory=cos^(-1)(sinx),w h e r ex in (-pi/2,pi/2),i s-1 (dy)/(dx)fory=cos^(-1)(sinx),w h e r ex in (pi/2,(3pi)/2),i s-1

Solve the equation x^2-x+1=1/2+sqrt(x-3/4),w h e r exgeq3/4dot

If y=sqrt(log{sin((x^2)/3-1)}) , t h e n find (dy)/(dx)dot

Prove that the curves y=f(x),[f(x)>0],a n dy=f(x)sinx ,w h e r ef(x) is differentiable function, have common tangents at common points.