Solve the equation:
`cos^2[pi/4(sinx+sqrt(2)cos^2x)]-tan^2[x+pi/4tan^2x]=1`
Text Solution
Verified by Experts
`cos^(2) [pi/4(sin x+sqrt(2) cos^(2) x)]-tan^(2) [x+pi/4 tan^(2) x]=1` `rArr sin^(2) [pi/4 (sin x+ sqrt(2) cos^(2) x)]+tan^(2) [x+pi/4 tan^(2) x]=0` It is possible only when `sin^(2) [pi/4 (sin x+sqrt(2) cos^(2) x)]=0`...(i) and `tan^(2) [x+pi/4 tan^(2) x]=0` ...(ii) `:. pi/4 (sin x+ sqrt(2) cos^(2) x) = n pi, n in I` or `sin x +sqrt(2) cos^(2) x=4n` This equation has solution only for `n=0`. Thus, `sin x+sqrt(2) cos^(2) x=0` i.e., `sqrt(2) sin^(2) x- sin x-sqrt(2)=0` or `(sin x-sqrt(2)) (sqrt(2) sin x +1) =0` `:. sin x= - 1/sqrt(2)` `rArr x=2 kpi-pi//4, k in Z` Also these values of x satisfy Eq. (ii), therefore , the general solution of given equation is given by `x=2kpi - pi/4, k in Z`
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|4 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Solve the equation (sqrt(3))/2sinx-cosx=cos^2x
Solve the equation 2(cos x+cos2x)+sin2x(1+2cos x)=2sinx for (-pilt=xlt=pi)
Solve the equation tan^(-1)2x+tan^(-1)3x=pi/4
The number of solutions of the equation cos^2(x+pi/6)+cos^2x-2cos(x+pi/6)dotcospi/6=sin^2pi/6 in interval ((-pi)/2,pi/2) is_________
Number of solutions of the equation 4(cos^(2) 2x+ cos 2 x +1)+tan x (tan x-2sqrt(3))=0 in [0, 2pi] is
Find the number of solution of the equation 1+e^(cot^2 x )=sqrt(2|sinx|-1)+(1-cos2x)/(1+sin^4x) for x in (0,5pi)dot
The number of solutions of the equation |2 sin x-sqrt(3)|^(2 cos^(2) x-3 cos x+1)=1 in [0, pi] is
The number of solutions of the equation cos6x+tan^2x+cos(6x)tan^2x=1 in the interval [0,2pi] is (a) 4 (b) 5 (c) 6 (d) 7
Solution of the equation cos^2x(dy/dx)-(tan2x)y=cos^4x, when y(pi/6)=(3sqrt(3))/8 is
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)