Home
Class 12
MATHS
Solve cos 2x=|sin x|, x in (-pi/2, pi)....

Solve `cos 2x=|sin x|, x in (-pi/2, pi)`.

Text Solution

Verified by Experts

The correct Answer is:
`x=-pi/6, pi/6, (5pi)/6`

If `sin x gt 0`, then we have
`2 sin^(2)x+sin x -1 =0`
`rArr sin x=1/2`,
`:. x=pi/6, (5pi)/6`
If `sin x lt 0` then we have
`2sin^(2) x- sin x-1=0`
`rArr sinx=-1/2`
`:. x=-pi/6`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.2|6 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.3|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

The number of solution (s) of the equation sqrt2+cos 2 x=(sin x+cos x) in [-pi/2, pi]

Solve sin 2x=4 cos x .

Solve |sinx +cos x |=|sinx|+|cosx|, x in [0,2pi] .

Find the number of solution of the equation sqrt(cos 2x+2)=(sin x + cos x) in [0, pi] .

Solve cos x gt 1 -(2x)/pi .

Solve cos2x +sinx =1,given that -pi le x le pi

If 2 sin^(2) ((pi//2) cos^(2) x)=1-cos (pi sin 2x), x ne (2n + 1) pi//2, n in I , then cos 2x is equal to

The number of solution of the equation |sin x|=|cos 3x| in [-2pi,2pi] is

Find the number of solutions to log_(e) |sin x| = -x^(2) + 2x in [-(pi)/(2), (3pi)/(2)] .