Home
Class 12
MATHS
If |2 sin theta-cosec theta| ge 1 and th...

If `|2 sin theta-cosec theta| ge 1` and `theta ne (n pi)/2, n in Z`, then

A

`cos 2 theta ge 1//2`

B

`cos 2 theta ge 1//4`

C

`cos 2 theta le 1//2`

D

`cos 2 theta le 1//4`

Text Solution

Verified by Experts

The correct Answer is:
A

`|2 sin theta- cosec theta| ge 1`
or `|2 sin^(2) theta-1| ge |sin theta|`
or `|cos 2 theta| ge | sin theta|`
or `2 cos^(2) 2 theta ge 1-cos 2 theta`
or `2 cos^(2) 2 theta+ cos 2 theta-1 ge 0`
or `(2 cos 2 theta-1) (cos 2 theta+1) ge 0`
`rArr cos 2 theta ge 1/2" "[" as" cos theta ne 0, i.e., cos 2 theta ne -1]`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise (Multiple)|31 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.9|6 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Simplify : sin theta (cosec theta - sin theta)

Consider the equation sec theta +cosec theta=a, theta in (0, 2pi) -{pi//2, pi, 3pi//2} If the equation has no real roots, then

Consider the equation sec theta +cosec theta=a, theta in (0, 2pi) -{pi//2, pi, 3pi//2} If the equation has four distinct real roots, then

Consider the equation sec theta +cosec theta=a, theta in (0, 2pi) -{pi//2, pi, 3pi//2} If the equation has two distinct real roots, then

Solve sin^(2) theta-cos theta=1/4, 0 le theta le 2pi .

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))xx (cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))/(cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of tan^(2)""(pi)/(7)tan ^(2)""(2pi)/(7) tan ^(2)""(3pi)/(7) is

CENGAGE-TRIGONOMETRIC EQUATIONS-Exercise (Single)
  1. The set of all xin((-pi)/2,pi/2) satisfying |4sinx-1|<sqrt(5) is given...

    Text Solution

    |

  2. If roots of the equation 2x^2-4x+2sintheta-1=0 are of opposite sign, t...

    Text Solution

    |

  3. If |2 sin theta-cosec theta| ge 1 and theta ne (n pi)/2, n in Z, then

    Text Solution

    |

  4. Which of the following is not the solution of the equation sin 5x=16 s...

    Text Solution

    |

  5. The number of solutions of the equation |2 sin x-sqrt(3)|^(2 cos^(2)...

    Text Solution

    |

  6. One of the root equation cosx-x+1/2=0 lies in the interval (a)(0,pi/2)...

    Text Solution

    |

  7. The smallest positive x satisfying the equation (log)(cosx)sinx+(log)(...

    Text Solution

    |

  8. The number of ordered pairs which satisfy the equation x^2+2xsin(x y)+...

    Text Solution

    |

  9. Consider the system of linear equations in x , ya n dz : ""(sin3theta...

    Text Solution

    |

  10. The equation sin^4x-2cos^2x+a^2=0 can be solved if (a)-sqrt(3)lt=alt=s...

    Text Solution

    |

  11. If the inequality sin^2x+acosx+a^2>1+cosx holds for any x in R , then...

    Text Solution

    |

  12. sinx+cosx=y^2-y+a has no value of x for any value of y if a belongs to...

    Text Solution

    |

  13. The number of solutions of [sin x+ cos x]=3+ [- sin x]+[-cos x] (where...

    Text Solution

    |

  14. The equation cos^8x+bcos^4x+1=0 will have a solution if b belongs to (...

    Text Solution

    |

  15. The number of values of yin[-2pi,2pi] satisfying the equation |sin2x|+...

    Text Solution

    |

  16. If both the distinct roots of the equation |sinx|^2+|sinx|+b=0in[0,pi]...

    Text Solution

    |

  17. e^(|sinx|)+e^(-|sinx|)+4a=0 will have exactly four different solutions...

    Text Solution

    |

  18. The equation tan^4x-2sec^2x+a=0 will have at least one solution if A) ...

    Text Solution

    |

  19. The total number of ordered pairs (x , y) satisfying |x|+|y|=2,sin((pi...

    Text Solution

    |

  20. If a , b in [0,2pi] and the equation x^2+4+3sin(a x+b)-2x=0 has at lea...

    Text Solution

    |