Home
Class 12
MATHS
The sum of all roots of sin(pi(log)3(1/x...

The sum of all roots of `sin(pi(log)_3(1/x))=0` in `(0,2pi)` is `3/2` (b) 4 (c) `9/2` (d) `(13)/3`

A

`3//2`

B

4

C

`9//2`

D

`13//3`

Text Solution

Verified by Experts

The correct Answer is:
C

`pi log_(3) (1/x)=k pi, k in I`
`log_(3) (1/x)=k or x=3^(-k)`
The possible values of k are `-1, 0, 1, 2, 3,...`
`S=3+1+1/3+1/3^(2)+1/3^(3)+...oo=3/(1-1/3)=9/2`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise (Multiple)|31 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.9|6 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

The number of roots of the equation (log)_(3sqrt("x"))x+(log)_(3x)sqrt(x)=0 is 1 (b) 2 (c) 3 (d) 0

The number of roots of the equation xsinx=1,x in [-2pi,0)uu(0,2pi] is 2 (b) 3 (c) 4 (d) 0

The number of roots of (1-tantheta)(1+sin2theta)=1+tanthetafortheta in [0,2pi] is 3 (b) 4 (c) 5 (d) none of these

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))xx (cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))/(cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

The number of roots of the equation sin(2x+pi/18) cos(2x-pi/9)=-1/4 in [0, 2pi] is

The principal value of sin^(-1)(sin((2pi)/3)) is (a) -(2pi)/3 (b) (2pi)/3 (c) (pi)/3 (d) (5pi)/3 (e) none of these

Sum of roots of the equation x^4-2x^2sin^2(pix/2)+1=0 is 0 (b) 2 (c) 1 (d) 3

The number of solutions of tanx-m x=0,m >1, in (-pi/2,pi/2) is (A) 1 (B) 2 (C) 3 (D) m

The sum of all the solution in [0,4pi] of the equation tanx+cotx+1=cos(x+pi/4)i s (a) 3pi (b) pi/2 (c) (7pi)/2 (d) 4pi

CENGAGE-TRIGONOMETRIC EQUATIONS-Exercise (Single)
  1. Which of the following is not the solution of the equation sin 5x=16 s...

    Text Solution

    |

  2. The number of solutions of the equation |2 sin x-sqrt(3)|^(2 cos^(2)...

    Text Solution

    |

  3. One of the root equation cosx-x+1/2=0 lies in the interval (a)(0,pi/2)...

    Text Solution

    |

  4. The smallest positive x satisfying the equation (log)(cosx)sinx+(log)(...

    Text Solution

    |

  5. The number of ordered pairs which satisfy the equation x^2+2xsin(x y)+...

    Text Solution

    |

  6. Consider the system of linear equations in x , ya n dz : ""(sin3theta...

    Text Solution

    |

  7. The equation sin^4x-2cos^2x+a^2=0 can be solved if (a)-sqrt(3)lt=alt=s...

    Text Solution

    |

  8. If the inequality sin^2x+acosx+a^2>1+cosx holds for any x in R , then...

    Text Solution

    |

  9. sinx+cosx=y^2-y+a has no value of x for any value of y if a belongs to...

    Text Solution

    |

  10. The number of solutions of [sin x+ cos x]=3+ [- sin x]+[-cos x] (where...

    Text Solution

    |

  11. The equation cos^8x+bcos^4x+1=0 will have a solution if b belongs to (...

    Text Solution

    |

  12. The number of values of yin[-2pi,2pi] satisfying the equation |sin2x|+...

    Text Solution

    |

  13. If both the distinct roots of the equation |sinx|^2+|sinx|+b=0in[0,pi]...

    Text Solution

    |

  14. e^(|sinx|)+e^(-|sinx|)+4a=0 will have exactly four different solutions...

    Text Solution

    |

  15. The equation tan^4x-2sec^2x+a=0 will have at least one solution if A) ...

    Text Solution

    |

  16. The total number of ordered pairs (x , y) satisfying |x|+|y|=2,sin((pi...

    Text Solution

    |

  17. If a , b in [0,2pi] and the equation x^2+4+3sin(a x+b)-2x=0 has at lea...

    Text Solution

    |

  18. The sum of all roots of sin(pi(log)3(1/x))=0 in (0,2pi) is 3/2 (b) 4 ...

    Text Solution

    |

  19. Find the number of pairs of integer (x , y) that satisfy the following...

    Text Solution

    |

  20. If no solution of 3siny+12sin^3x=a lies on the line y=3x , then a in ...

    Text Solution

    |