Home
Class 12
MATHS
If log(175)5x=log(343)7x, then the value...

If `log_(175)5x=log_(343)7x`, then the value of `log_(42)(x^(4)-2x^(2)+7)` is

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
A

Let `log_(175)5x=log_(343)7x=k`
`rArr 5x=175^(k)` and `7x=343^(k)`
`rArr (5)/(7)=((175)/(343))^(k)`
`rArr k=(1)/(2)`
Now, `5x=(175)^(1//2)`
`rArr x=sqrt(7)`
`rArr log_(42)(x^(4)-2x^(2)+7)=1`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

If log_2x+log_(4)x+log_(16)x=7/2 , find the value of x.

Find the value of log_(2) (1/(7^(log_(7) 0.125))) .

Solve log_(2).(x-4)/(2x+5) lt 1 .

If 3^(((log_3 7))^x)=7^(((log_7 3))^x) , then the value of x will be

Solve log_(5-x)(x^(2)-6x+65)=2

Solve: log_(4)2^(8x)=2^(log_2^8)

Using log_(a)x^(n) = n log_(a)x, expand the following log_(2)7^(25) Note : logx = log_(10)x