Home
Class 12
MATHS
Find the value of x satisfying the equat...

Find the value of x satisfying the equations `log_(3)(log_(2)x)+log_(1//3)(log_(1//2)y)=1` and `xy^(2)=9`

Text Solution

Verified by Experts

The correct Answer is:
x=729

`log_(3)(log_(2)x)+log_(1//3)(log_(1//2)y)=1`
`rArr log_(3)(log_(2)x)-log_(3)(-log_(2)y)=1`
`rArr log_(3)(-(log_(2)x)/(log_(2)y))=1`
`rArr -(log_(2)x)/(log_(2)y)=3`
`rArr xy^(3)=1`
Also, `xy^(2)=9`
`rArr =(1)/(9)`
`therefore x=729`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

The value of x for which the equation 5*3^(log_3x)-2^(1-log_2x)-3=0

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

The value of x satisfying the equation 3sqrt(5)^((log_5) 5^(((log)_5(log)_5log_5(x/2))) = 3 1 (b) 3 (c) 18 (d) 54

Find the value of log_(5) log_(2)log_(3) log_(2) 512 .

The values of x, satisfying the equation for AA a > 0, 2log_(x) a + log_(ax) a +3log_(a^2 x)a=0 are

The value of x satisfying sqrt3^(-4+2log_(sqrt5)x)= 1//9 is

The equation log_4(2-x)+log_(0.25)(2+x)=log_4(1-x)+log_(0.25)(2x+1) has

The smallest integral x satisfying the inequality (1-log_(4)x)/(1+log_(2)x)le (1)/(2)x is.

Solve log_(2)x-3log_(1/2)x=6

The number of real solution(s) of the equation 9^(log_(3)(log_(e )x))=log_(e )x-(log_(e )x)^(2)+1 is equal to