Home
Class 12
MATHS
The value of log10(sqrt(3-sqrt(5))+sqrt(...

The value of `log_10(sqrt(3-sqrt(5))+sqrt(3+sqrt(5)))` is

A

`1//2`

B

`1//4`

C

`3//2`

D

`3//4`

Text Solution

Verified by Experts

The correct Answer is:
A

`log_(10)((sqrt(6-2sqrt(5))+sqrt(6+2sqrt(5)))/(sqrt(2)))`
`log_(10)(((sqrt(5)-1)+(sqrt(5)+1))/(sqrt(2)))`
`=log_(10)((2sqrt(5))/(sqrt(2)))`
`log_(10)sqrt(10)=(1)/(2)`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

The value of (log)_(sqrt(4+2sqrt(2))sqrt(4-2sqrt(2)))2^9 is...........

The value of (sqrt(3+2sqrt2)+sqrt(3-2sqrt2))^(2^(9)) is ________.

The value 4^(5log_(4sqrt(2))(3-sqrt(6))-6log_8(sqrt(3)-sqrt(2))) is

The sum up to n terms of the series 1/(sqrt(1) + sqrt(3)) + 1/(sqrt(3) + sqrt(5)) + 1/(sqrt(5) + sqrt(7)) +… is:

Find the value of (log)_(2sqrt(3))1728.

Find the value of determinant |(sqrt((13))+sqrt(3),2sqrt(5),sqrt(5))sqrt((15))+sqrt((26))5sqrt((10))3+sqrt((65))sqrt((15))5|

The value of log_((9)/(4))((1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3)))))...oo) is

The value of 6+(log)_(3/2)[1/(3sqrt(2)) * sqrt{ (4 - 1/(3sqrt(2))) sqrt(4 - 1/(3sqrt(2))....... } is ...............

The value of ((1+sqrt(3)i)/(1 - sqrt(3)i))^(10) is