Home
Class 12
MATHS
If log4A = log6B = log9(A+B) then the va...

If `log_4A = log_6B = log_9(A+B)` then the value of `B/A` is

A

`(sqrt(5)-1)/(4)`

B

`(sqrt(5)+1)/(4)`

C

`(sqrt(5)-1)/(2)`

D

`(sqrt(5)+1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
D

Let `log_(4)A=log_(6)B=log_(9)(A+B)=x`
`rArr A=4^(x),B=6^(x)` and `A+B=9^(x)`
`rArr 4^(x)+6^(x)=9^(x)`
`rArr 2^(2x)+2^(x).3^(x)=3^(2x)`
`rArr (3//2)^(2x)-(3//2)^(x)-1=0`
`rArr ((3)/(2))^(x)=(B)/(A)=(sqrt(5)+1)/(2)`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

If (log)_4A=(log)_6B=(log)_9(A+B),t h e n [4(B/A)] (where [ ] represents the greatest integer function) equals ..............

Given that log_2 3 = a, log_3 5=b,log_7 2=c ,then the value of log_(140) 63 is equal to

If (log)_a b=2,(log)_b c=2,a n d(log)_3c=3+(log)_3a , then the value of c//(a b) is............

If log_(b) n = 2 and log_(n) 2b = 2 , then find the value of b.

If log_(sqrt8) b = 3 1/3 , then find the value of b.

Let a= log_(3) 20, b = log_(4) 15 and c = log_(5) 12 . Then find the value of 1/(a+1)+1/(b+1)+1/(c+1) .

If a=(log)_(12)18 , b=(log)_(24)54 , then find the value of a b+5(a-b)dot

If (log)_2x+(log)_2ygeq6, then the least value of x+y is 4 (b) 8 (d) 16 (d) 32

If sum log_(2)x+log_(4) x + log_(16) x + log_(256) x + …=6, then find the value of x.

If A=((log _(2) 3)^(3)-(log _(2) 6)^(3)-(log _(2) 12)^(3)+(log _(2) 24)^(3))/(6) then the value of (2^(A)) is equal to