Home
Class 12
MATHS
logaN. logbN+logcN. logbN+logaN. logcNis...

`log_aN. log_bN+log_cN. log_bN+log_aN. log_cN`is equals to

A

`(log_(a)N. log_(b)N. log_(c )N)/(log_(abc)N)`

B

`(log_(abc)N)/(log_(a)N. log_(b)N. log_(c )N)`

C

`(log_(N)abc)/(log_(N)a. log_(N)b. log_(N)c)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

`log_(a)N.log_(b)N+log_(b)N.log_(c )N+log_(c )N. log_(a)N`
`=(1)/(log_(N)a alog_(N)b)+(1)/(log_(N)b log_(N)c)+(1)/(log_(N)c log_(N)a)`
`=(log_(N)a+log_(N)b+log_(N)c)/((log_(N)a)(log_(N)b)(log_(N)c))`
`=(log_(N)abc)/((1)/(log_(a)N)(1)/(log_(b)N)(1)/(log_(c )N))`
`=(log_(a)N.log_(b)N.log_(c )N)/(log_(abc)N)`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

log_(2)4+ log_(4)4 + log_(16)4 is equal to

If log_a(ab)=x then log_b(ab) is equals to

The number of real solution(s) of the equation 9^(log_(3)(log_(e )x))=log_(e )x-(log_(e )x)^(2)+1 is equal to

Solve : log_(3)x . log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x.log_(5)+log_(5)x.log_(3)x .

Prove the following identities: (a) (log_(a) n)/(log_(ab) n) = 1+ log_(a) b" "(b) log_(ab) x = (log_(a) x log_(b) x)/(log_(a) x + log_(b) x) .

The value of log_a b log_b c log_c a is ………………. .

If ((log)_a N)/((log)_c N)=((log)_a N-(log)_b N)/((log)_b N-(log)_c N),w h e r eN >0a n dN!=1, a , b , c >0 and not equal to 1, then prove that b^2=a c

(1)/(x log x log (log x ))

1/log_(ab)(abc)+1/log_(bc)(abc)+1/log_(ca)(abc) is equal to: