Home
Class 12
MATHS
Solve : log(3)x . log(4)x.log(5)x=log(3)...

Solve : `log_(3)x . log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x.log_(5)+log_(5)x.log_(3)x`.

Text Solution

Verified by Experts

The correct Answer is:
60

`log_(3)x.log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x.log_(5)x+log_(5)x.log_(3)x.`
Let `log_(x)3=p, log_(x)4=q, log_(x)5=4`
`rArr (1)/(pqr)=(1)/(pq)+(1)/(qr)=(1)/(pr)`
`rArr p+q+r=1`
`rArr log_(x)3+log_(x)4+log_(x)5=1`
`rArr log_(x)60=1`
`rArr x = 60`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

Solve log_(16)x+log_(4)x+log_(2)x=7

Solve x^(log_(3)x)=9

Solve : 3log_x(4)+ 2log_(4x)4+3log_(16x)4=0

Solve : 6(log_x2-(log_4x)+7=0.

Solve for x: log_(4) log_(3) log_(2) x = 0 .

Solve log_(6) 9-log_(9) 27 + log_(8)x = log_(64) x - log_(6) 4 ..

Solve log_(6) 9-log_(9) 27 + log_(8)x = log_(64) x - log_(6) 4 ..