Home
Class 12
MATHS
Solve : (3)/(2)log(4)(x+2)^(2)+3=log(4)(...

Solve : `(3)/(2)log_(4)(x+2)^(2)+3=log_(4)(4-x)^(3)+log_(4)(6+x)^(3)`.

Text Solution

Verified by Experts

The correct Answer is:
`x=2,1- sqrt(23)`

`(3)/(2)log_(4)(x+2)^(2)+3=log_(4)(4-x)^(3)+log_(4)(6+x)^(3)`
`rArr 3=log_(4)((24-2x-x^(2))/(|x+2|))^(3)`
`rArr ((24-2x-x^(2))/(|x+2|))^(3)=4^(3)`
`rArr (24-2x-x^(2))/(|x+2|)=4`
If `x+2gt0`
`rArr x^(2)+6x-16=0`
`rArr (x-2)(x+8)=0`
`rArr x = 2`
If `x+2 lt 0`
`x^(2)-2x-32 =0`
`rArr x=1 - sqrt(33)`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

Solve: log_(4)2^(8x)=2^(log_2^8)

solve : "log"_(4) 2^(8x) = 2^("log"_(2)^(8))

Solve : 3log_x(4)+ 2log_(4x)4+3log_(16x)4=0

Solve x^(log_(4) x)=2^(3(log_(4)x+3) .

Solve log_(4)(x-1)= log_(2) (x-3) .

Solve: 27^(log_(3)root(3)(x^(2)-3x+1) )=(log_(2)(x-1))/(|log_(2)(x-1)|) .

Solve (log)_2(x-1)> 4.

Solve: 4(log)_(x/2)(sqrt(x))+2(log)_(4x)(x^2)=3(log)_(2x)(x^3)dot

Solve log_(2).(x-4)/(2x+5) lt 1 .