Home
Class 12
MATHS
The value of x satisfying 5^logx-3^(lo...

The value of x satisfying `5^logx-3^(logx-1)=3^(logx+1)-5^(logx - 1)` , where the base of logarithm is 10 is not : 67 divisible by

Text Solution

Verified by Experts

The correct Answer is:
100

`5^(log x)-3^(log x-1)=3^(log x+1)-5^(log x-1)`
`rArr 5^(log x)-3^(log x-1)=3^(log x+1)`
`rArr 5^(log x)+5^(log x-1)=3^(log x+1)+3^(log x-1)`
`rArr 5^(log x)+(5^(log x))/(5)=3.3^(log x)+(3^(log x))/(3)`
`rArr (6.5^(log x))/(5)=(10.3^(log x))/(3)`
`rArr ((3)/(5))^(log x)=((3)/(5))^(2)`
`rArr log_(10)x=2`
`rArr x =100`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

int(e^(7logx)-e^(6logx))/(e^(6logx)-e^(5logx))dx is:

(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))= …………. .

Find the derivatives of the following : y=x^(logx)+(logx)^(x)

The value of e^(2logx)= ……….

int(e^(6logx)-x^(5))/(e^(4logx)-x^(3))dx

The value of e^(2logx) = …………..

Integrate the functions (e^(5logx)+e^(4logx))/(e^(3logx)+e^(2logx))

Find the derivatives of the following : (cosx)^(logx)

int(1)/(x(logx)log(logx))dx=