Home
Class 12
MATHS
Solve: logaxloga(xyz)=48; logayloga(xy...

Solve: `log_axlog_a(xyz)=48`; `log_aylog_a(xyz)=12`; `log_azlog_a(xyz)=84`

Text Solution

Verified by Experts

The correct Answer is:
`x=a^(4),y=a,z=a^(7)`

Adding given equations
`log_(a)(xyz)[log_(a)x +log_(a)y+log_(a)z]=144`
`rArr log_(a)(xyz)=(144)^(1//2)=12`
`rArr xyz = a^(12)`
From `log_(a)x log_(a)(xyz)=48`
`rArr (log_(a)x)(12)=48`
`rArr log_(a)x=4`
`rArr =a^(4)`
Similary y = a and `z=a^(7)`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

Solve : 6(log_x2-(log_4x)+7=0.

Solve log(-x)=2log(x+1)dot

Solve (log)_x2(log)_(2x)2=(log)_(4x)2.

Solve log_2|x-1|<1

Solve : log_(x^(2)16+log_(2x)64=3 .

Solve : 3log_x(4)+ 2log_(4x)4+3log_(16x)4=0

Solve log_x(x^2-1)<=0

The value of the determinant |[log_a(x/y), log_a(y/z), log_a(z/x)], [log_b (y/z), log_b (z/x), log_b (x/y)], [log_c (z/x), log_c (x/y), log_c (y/z)]|