Home
Class 12
MATHS
Solve : log(x^(2)16+log(2x)64=3....

Solve : `log_(x^(2)16+log_(2x)64=3`.

Text Solution

Verified by Experts

The correct Answer is:
`x=2^(-1//3),4`

`log_(x^(2))16+log_(2x)64=3`
`rArr (4)/(log_(2)x^(2))+(6)/(log_(2)x)=3`
Put `log_(2)x=t`
`rArr (2)/(t)+(6)/(1+t)=3`
`rArr 2+2t+6t=3t+3t^(2)`
`rArr 3t^(2)-5t-2=0`
`rArr (3t+1)(t-2)=0`
`rArr t=-(1)/(3), t=2`
`rArr log_(2)x=-(1)/(3)` or `log_(2)x=2`
`rArr x=2^(-1//3)` or x = 4
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

Solve log_x(x^2-1)<=0

Solve : 3log_x(4)+ 2log_(4x)4+3log_(16x)4=0

Solve : 6(log_x2-(log_4x)+7=0.

Solve (log)_2(3x-2)=(log)_(1/2)x

Solve: log_(4)2^(8x)=2^(log_2^8)

Solve x^(log_(3)x)=9

Solve (log)_3(x-2)lt=2.