Home
Class 12
MATHS
98. The value of x satisfying the equati...

98. The value of x satisfying the equation `((sqrtpi)^(log_pi(x))).((sqrtpi)^(log_(pi^2)(x))).((sqrtpi).^(log_(pi^4)(x))).((sqrtpi)^(log_(pi^8)(x)))...oo=3` is equal to

A

`sqrt(pi)`

B

`pi`

C

3

D

`(1)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
C

We have
`(sqrt(pi))^(log_(pi)x).(sqrt(pi))^(log_(pi)4x).(sqrt(pi))^(log_(pi)8x)`
`rArr (sqrt(pi))^((1+(1)/(2)+(1)/(4)+(1)/(8)+…oo)log_(pi)x)=3`
`rArr (sqrt(pi))^(2log_(pi)x)=3`
`rArr pi^(log_(pi)x=3`
`rArr x = 3`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

The value of x satisfying the equation 3sqrt(5)^((log_5) 5^(((log)_5(log)_5log_5(x/2))) = 3 1 (b) 3 (c) 18 (d) 54

Find the value of x satisfying the equations log_(3)(log_(2)x)+log_(1//3)(log_(1//2)y)=1 and xy^(2)=9

The value of x for which the equation 5*3^(log_3x)-2^(1-log_2x)-3=0

The values of x, satisfying the equation for AA a > 0, 2log_(x) a + log_(ax) a +3log_(a^2 x)a=0 are

Number of real values of x satisfying the equation log_(x^2+6x+8)(log_(2x^2+2x+3)(x^2-2x))=0 is equal to

The smallest integral x satisfying the inequality (1-log_(4)x)/(1+log_(2)x)le (1)/(2)x is.

The smallest positive x satisfying the equation (log)_(cosx)sinx+(log)_(sinx)cosx=2 is pi/2 (b) pi/3 (c) pi/4 (d) pi/6

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

The number of real solution(s) of the equation 9^(log_(3)(log_(e )x))=log_(e )x-(log_(e )x)^(2)+1 is equal to

Integral value of x which satisfies the equation =log_6 54+(log)_x 16=(log)_(sqrt(2))x-(log)_(36)(4/9)i s ddot