Home
Class 12
MATHS
If a gt 1, x gt 0 and 2^(log(a)(2x))=5^(...

If `a gt 1, x gt 0` and `2^(log_(a)(2x))=5^(log_(a)(5x))`, then x is equal to

A

`(1)/(10)`

B

`(1)/(5)`

C

`(1)/(2)`

D

1

Text Solution

Verified by Experts

The correct Answer is:
A

We having `2^(log_(a)(2x))=5^(log_(a)(5x))`
Taking log on both sides, we get
`log_(a)(2x).log 2=log_(a)(5x).log 5`
`rArr ((log 2+log x))/(log a)log 2=((log 5+ log x))/(log a)log 5`
`rArr (log 2)^(2)+log x log 2=(log 5)^(2)+(log x)log 5`
`rArr log x(log 2-log 5)=(log 5)^(2)-(log 2)^(2)`
`rArr -log x=log 5+log 2=log 10`
`rArr x=(1)/(10)`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

4^(log_9 3)+9^(log_2 4)=1 0^(log_x 83) , then x is equal to

The number of real solution(s) of the equation 9^(log_(3)(log_(e )x))=log_(e )x-(log_(e )x)^(2)+1 is equal to

The value of lim_(xto 0)(log(1+2x))/(x) is equal to

If (log)_k xdot(log)_5k=(log)_x5,k!=1,k >0, then x is equal to (a) k (b) 1/5 (c) 5 (d) none of these

If log_(2) x xx log_(3) x = log_(2) x + log_(3) x , then find x .

Number of real values of x satisfying the equation log_(x^2+6x+8)(log_(2x^2+2x+3)(x^2-2x))=0 is equal to

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

If log_(1//2)(4-x)gelog_(1//2)2-log_(1//2)(x-1) ,then x belongs to

Solve: (log)_(x+1/x)(log_2(x-1)/(x+2))>0

lim_(x->oo)cot^(-1)(x^(-a)log_a x)/(sec^(-1)(a^xlog_x a)),(a >1) is equal to (a) 2 (b) 1 (c) (log)_a2 (d) 0