Home
Class 12
MATHS
If log(2)(log(2)(log(2)x))=2, then the n...

If `log_(2)(log_(2)(log_(2)x))=2`, then the number of digits in x, is `(log_(10)2=0.3010)`

A

7

B

6

C

5

D

4

Text Solution

Verified by Experts

The correct Answer is:
C

`log_(2)(log_(2)(log_(2)x))=2`
`rArr log_(2)(log_(2)x)=4`
`rArr log_(2)x=16`
`rArr x=2^(16)`
`therefore log_(10)x=16log_(10)2=16xx0.3010=4.8160`
`therefore` Number of digits = 5
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

Find the number of digits in 4^(2013) , if log_(10) 2 = 0.3010.

If log_2x+log_(4)x+log_(16)x=7/2 , find the value of x.

If log(2)=0.30103 find the number of digits in 2^(100)

If log_(1//2)(4-x)gelog_(1//2)2-log_(1//2)(x-1) ,then x belongs to

Solve log_(16)x+log_(4)x+log_(2)x=7

If (log)_(10)2=0. 30103 ,(log)_(10)3=0. 47712 , then find the number of digits in 3^(12)*2^8

Solve (log)_x2(log)_(2x)2=(log)_(4x)2.