Home
Class 12
MATHS
Given a(1)cos alpha(1)+alpha(2)cos alpha...

Given `a_(1)cos alpha_(1)+alpha_(2)cos alpha_(2)+…+a_(n)cos alpha_(n)=0` and `a_(1)cos(alpha_(1)+theta)+a_(2)cos(alpha_(2)+theta)+…+a_(n)cos(alpha_(n)+theta)=0 (theta ne k pi)`, then the value of `a_(1)cos(alpha_(1)+lambda)+a_(2)cos(alpha_(2)+lambda)+…+a_(n)cos(alpha_(n)+lambda)` is

A

`theta-lambda`

B

`theta+lambda`

C

`lambda`

D

0

Text Solution

Verified by Experts

The correct Answer is:
D

`a_(1)cos (alpha_(1)+theta)+a_(2)cos(alpha_(2)+theta)+…+a_(n)cos (alpha_(n)+theta)=0`
`rArr (a_(1)cos alpha_(1)+a_(2)cos alpha_(2)+…+alpha_(n))cos theta-(a_(1)sin alpha_(1)+a_(2)sin alpha_(2)+….+a_(n)sin alpha_(n)sin theta)=0`
`rArr a_(1) sin alpha_(1)+a_(2)sin alpha_(2)+....+a_(n)sin alpha_(n)=0`
(since `sin theta ne 0`)
and `a_(1) cos alpha_(1)+a_(2) cos alpha_(2)+...+ a_(n) cos alpha_(n)=0`
Now, `a_(1)cos (alpha_(1)+lambda)+a_(2)cos (alpha_(2)+lambda)+...+a_(n) cos (alpha_(n)+lambda)`
`=(a_(1)cos alpha_(1)+a_(2)cos alpha_(2)+...+a_(n) cos alpha_(n))cos lambda - (a_(1) sin alpha_(1)+a_(2) sin alpha_(2)+...+ a_(n) sin alpha_(n))sin lambda = 0`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE|Exercise Solved Examples And Exercises|450 Videos

Similar Questions

Explore conceptually related problems

(cos2 x - cos2 alpha)/(cos x - cos alpha)

If a_(1) = 4 and a_(n + 1) = a_(n) + 4n for n gt= 1 , then the value of a_(100) is

IF tan alpha = ( sin alpha - cos alpha )/( sin alpha + cos alpha) , then sin alpha + cos alpha is

If a_(1)=-1 and a_(n)=(a_(n-1))/(n+2) then the value of a_(4) is ____.

Show that cos^2theta+cos^2(alpha+theta)-2cosalphacostheta"cos"(alpha+theta) is independent of thetadot

If f(alpha,beta)=|(cos alpha,-sin alpha,1),(sin alpha,cos alpha,1),(cos(alpha+beta),-sin(alpha+beta),1)|, then

If cot^3alpha+cot^2alpha+cotalpha=1 then (a) cos2alpha.tanalpha=-1 (b) cos2alpha.tanalpha=1 (c) cos2alpha-tan2alpha=1 (d) cos2alpha-tan2alpha=-1

Prove that (cos alpha+cos beta)^(2)+(sin alpha -sin beta)^(2)=4 cos^(2) ((alpha+beta)/(2))