Home
Class 12
MATHS
If sinalpha=1/sqrt5 and sinbeta=3/5 , th...

If `sinalpha=1/sqrt5 and sinbeta=3/5` , then `beta-alpha` lies in

A

`[0,pi//4]`

B

`[pi//2,3pi//4]`

C

`[3pi//4,pi]`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

We have `sin alpha = 1//sqrt(5)rArr cos alpha = 2//sqrt(5)`
and `sin beta = 3//5 rArr cos beta = 4//5`
`sin (beta - alpha) = sin beta cos alpha - sin alpha cos beta`
`=(3)/(5).(2)/(sqrt(5))-(1)/(sqrt(5)).(4)/(5)=(2)/(5sqrt(5))=0.1789`
Now `sin.(pi)/(4)=(1)/(sqrt(2))=0.7071 = sin.(3pi)/(4)`
Since `0 lt 0.1789 lt 0.7071`
`therefore sin 0 lt sin (beta - alpha) lt sin.(pi)/(4) rArr 0 lt (beta - alpha) lt (pi)/(4)`
Also, `sin pi lt sin(beta-alpha)lt sin.(3pi)/(4)`
`therfore (beta-alpha)in[0,pi//4]` or `[3pi//4,pi]`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE|Exercise Solved Examples And Exercises|450 Videos

Similar Questions

Explore conceptually related problems

Given that sinalpha=1/sqrt2andtanbeta=sqrt3 . Find the value of alpha+beta .

If sinalpha+sinbeta and cosalpha+cosbeta=b , prove that tan(alpha-beta)/2=+-sqrt((4-a^2-b^2)/(a^2+b^2)) .

If 2alpha= -1-isqrt(3)" and"2beta= -1+isqrt(3) , then 5alpha^(4)+5beta^(4)+7alpha^(-1)beta^(-1) is equal to

If alpha=-5 and beta=9 , then form the quadratic equation.

If 3sinbeta=sin(2alpha+beta) then tan(alpha+beta)-2tanalpha is (a)independent of alpha (b)independent of beta (c)dependent of both alpha and beta (d)independent of both alpha and beta

If sinalpha-sinbeta=1/3andcosbeta-cosalpha=1/2, show that cot(alpha+beta)/2=2/3

If sinalpha+sinbeta=a and cosalpha+cosbeta=b , prove that tan((alpha-beta)/2)=+-sqrt((4-a^2-b^2)/(a^2+b^2)) .

The points A(0,0),B(cosalpha,sinalpha) and C(cosbeta,sinbeta) are the vertices of a right-angled triangle if (a) sin((alpha-beta)/2)=1/(sqrt(2)) (b) cos((alpha-beta)/2)=-1/(sqrt(2)) (c) cos((alpha-beta)/2)=1/(sqrt(2)) (d) sin((alpha-beta)/2)=-1/(sqrt(2))

If tanalpha=1/7,sin beta=1/(sqrt(10)), prove that alpha+2beta=pi/4

If 2|sin2alpha|=|tanbeta+cotbeta|,alpha,beta in (pi/2,pi), then the value of alpha+beta is (a) (3pi)/4 (b) pi (c) (3pi)/2 (d) (5pi)/4