Home
Class 12
MATHS
If in a Delta ABC ,tanA+tanB+tanC=6, the...

If in a `Delta ABC ,tanA+tanB+tanC=6,` then `cotA cotB cotC=`

A

`1/6`

B

1

C

6

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

`tan A+tan B+tn C`
= tna A tan B tna C = 6
`therefore cot A cot B cot C = 1//6`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE|Exercise Solved Examples And Exercises|450 Videos

Similar Questions

Explore conceptually related problems

In a A B C , if tanA:tanB :tanC=3:4:5, then the value of sinA sinB sinC is equal to (a) 2/(sqrt(5)) (b) (2sqrt(5))/7 (2sqrt(5))/9 (d) 2/(3sqrt(5))

If A , B , C , D are the angles of a quadrilateral, then (tanA+tanB+tanC+tanD)/(cotA+cotB+cotC+cotD)i se q u a lto: tanAtanBtanCtanD cotAcotBcotCcotD tan^2A+tan^2B+tan^2C+tan^2D sumtanAtanBtanC

In triangle A B C ,tanA+tanB+tanC=6a n dtanAtanB=2, then the values of tanA ,tanB ,tanC are, respectively (a) 1,2,3 (b) 3,2//3,7//3 (c) 4,1//2 ,3//2 (d) none of these

Column I Column II In A B C , if cos24+cos2B+cos2C=-1 then we can conclude that triangle is p. Equilateral triangle In A B C if tanA >0,tanB >0a n dtanAtanB 0,cotB >0a n dcotAcotB<1, then triangle is s. Obtuse angled triangle

If tan^3A+tan^3B+tan^3C=3tanA* tanB*tanC , then prove that triangle ABC is an equilateral triangle.

If in a triangleABC show that : (i) tanA+tanB+tanC =tanAtanBtanC.

In a triangle ABC, if sinAsin(B-C)=sinCsin(A-B), then prove that cotA ,cotB ,cotC are in AdotPdot

In triangle A B C , if cotA *cotC=1/2a n dcot B* cotC=1/(18), then the value of tanC is

If A+B+C=pi, prove that (tanA)/(tanBdottanC)+(tanB)/(tanAdott a n C)+(tanC)/(tanAdottanB)=tanA+tanB+tanC-2cot A-2cot B-2cot C

Prove that in A B C ,tanA+tanB+tanCgeq3sqrt(3,) where A , B , C are acute angles.