Home
Class 12
MATHS
The number of integers in the range of 3...

The number of integers in the range of `3 sin^(2)x+3sin x cos x+7cos^(2)x` is

A

3

B

4

C

5

D

6

Text Solution

Verified by Experts

The correct Answer is:
C

`3 sin^(2)x+3 sin x.cos x+7 cos^(2)x`
`=(3(1-cos 2x))/(2)+(3sin 2x)/(2)+(7(1+cos 2x))/(2)`
`=(3 sin 2x 2x + 4 cos 2x)/(2)+5`
Now `-5 le 3 sin 2x + 4 cos 2x le 5`
`therefore (3 sin 2x + 4 cos 2x)/(2)+5 in [(5)/(2),(15)/(2)]`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE|Exercise Solved Examples And Exercises|450 Videos

Similar Questions

Explore conceptually related problems

Solve 2 sin^(2) x-5 sin x cos x -8 cos^(2) x=-2 .

General solution of sin^(2) x-5 sin x cos x -6 cos^(2)x=0 is

The number of distinct real roots of the equation sin^(3)x +sin^(2)x sin x-sin x- sin 2x-2cos x=0 belonging to the interval (-(pi)/(2),(pi)/(2))

Solve 7 cos^(2)x+sin x cos x-3=0 .

Solve 2 sin^(3) x=cos x .

(cos2x)/(sin ^(2) x cos^(2) x)

The number of solution of sin x+sin 2x+sin 3x =cos x +cos 2x+cos 3x, 0 le x le 2pi , is

(3 + 4 cos x)/( sin^(2) x )

The number of solutions of the equation |2 sin x-sqrt(3)|^(2 cos^(2) x-3 cos x+1)=1 in [0, pi] is

Solve sin x-3 sin 2x+sin 3x=cos x-3 cos 2x+cos 3x