Home
Class 12
MATHS
If y=(sqrt(1-sin4x)+1)/(sqrt(1+sin 4x)-1...

If `y=(sqrt(1-sin4x)+1)/(sqrt(1+sin 4x)-1)`, then y can be

A

cot x

B

`- tan x`

C

`-cot((pi)/(4)+x)`

D

`tan((pi)/(4)+x)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

Since `1 pm sin theta = (cos.(theta)/(2)pm sin.(theta)/(2))^(2)`
`therefore y=(pm(cos 2x - sin 2x)+1)/(pm (cos 2x+sin 2x)-1)`
Taking '+' sign in Nr. And Dr. we get
`y=(1+cos2x -sin 2x)/(sin 2x-(1-cos 2x))`
`=(cos^(2)x-2sin x cos x)/(2 sin x cos x -2 sin^(2)x)=(cos x)/(sin x)=cot x`
Taking '-' sign in Nr. and Dr. we get
`y=(sin 2x + 1-cos 2x)/(-sin 2x -(1+cos 2x))`
`=(2 sin x cos x + 2 sin^(2)x)/(-2sin x cos x-2cos^(2)x)`
`=-tan x` Taking '+' sign in Nr. and '-' sign in Dr. we get
`y=(1+cos 2x-sin 2x)/(-sin 2x-(1+cos 2x))`
`=(2 cos^(2)x-2 sin x cos x)/(-2sin x cos x -2 cos^(2)x)`
`=(sin x - cos x)/(sin x + cos x)`
`= tan (x=(pi)/(4))`
`=-cot((pi)/(2)+x -(pi)/(4))`
`=-cot((pi)/(4)+ x)`
Taking '-' sign in Nr. and '+' sign in Dr. we get
`y=(sin 2x + 1-cos 2x)/(sin 2x-(1-cos 2x))`
`=(2 sin x cos x + 2 sin^(2)x)/(2 sin x cos x-2 sin^(2)x)`
`=(cos x + sin x)/(cos x - sin x)`
`=(1+tan x)/(1-tan x)`
`=tan((pi)/(4)+ x)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE|Exercise Solved Examples And Exercises|450 Videos

Similar Questions

Explore conceptually related problems

(x sin^(-1) x)/(sqrt(1 - x^(2)))

Differentiate w.r.t.x the function. cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))],0 lt x lt (pi)/(2) .

(sin ^(-1) x )/( sqrt( 1 - x ^(2)) )

sin(1/4sin^(- 1)(sqrt 63/8)i s

Evaluate lim_(xto0) (sqrt(1 + sin x) - sqrt(1 - sin x))/(tan x)

int(2sin^(-1)x)/(sqrt(1-x^(2)))dx

lim_(xto0)(sin2x)/(1-sqrt(1-x))

If sqrt(1-x^6)+sqrt(1-y^6)=a(x^3-y^3), then prove that (dy)/(dx)=(x^2)/(y^2)sqrt((1-y^6)/(1-x^6))

If y=(sin^(-1)x)/(sqrt(1-x^2)),t h e n((1-x^2)dy)/(dx) is equal to (a) x+y (b) 1+x y (c) 1-x y (d) x y-2

Solve sqrt(5-2 sin x)=6 sin x-1