Home
Class 12
MATHS
In a Delta ABC, 2 sinA cos B + 2 sin B c...

In a `Delta ABC`, 2 sinA cos B + 2 sin B cos C + 2 sin cos A = sin A + sin B + sin C, then `Delta ABC`is

A

isosceles

B

right angled

C

acute angled

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

Given
`sin(A+B)+sin(A-B)+sin (B+C)+sin(B-C)+sin (C+A)+sin(C-A)`
`= sin A + sin B + sin C`
`rArr sin(A-B)+sin (B-C)+sin(C-A)=0`
`rArr 4 sin.(A-B)/(2)sin.(B-C)/(2)sin.(C-A)/(2)=0`
`therefore Delta` is isosceles.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE|Exercise Solved Examples And Exercises|450 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC sin Asin B sin C <= (3sqrt3)/8

Prove that a cos A + b cos B + c cos C = 4 R sin A sin B sin C.

In Delta ABC, (sin A (a - b cos C))/(sin C (c -b cos A))=

In triangle ABC, sinA sin B + sin B sin C + sin C sin A = 9//4 and a = 2 , then the value of sqrt3 Delta , where Delta is the area of triangle, is _______

In a Delta ABC , if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin C= (3+ sqrt3)/(8) , then The value of tan A + tan B + tan C is

In any triangle ABC ,c^2 sin 2 B + b^2 sin 2 C is equal to

Expand cos ( A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = (pi)/(2) .

if ( cos A + cos B )/( sin A + sin B ) = k ( (sin A - sin B)/ ( cos A- cos B)) then k is

In a triangle ABC , if cos A cos B + sin A sin B sin C = 1 , then a:b:c is equal to

In a Delta ABC, if (i)sin (A)/(2) sin"" (B)/(2) sin"" (C )/(2) gt 0 (ii)sin AsinBsinC gt 0