Home
Class 12
MATHS
If cos A, cosB and cosC are the roots o...

If `cos A, cosB and cosC` are the roots of the cubic `x^3 + ax^2 + bx + c = 0` where `A, B, C` are the anglesof a triangle then find the value of `a^2 – 2b– 2c`.

A

0

B

`1//2`

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
C

cos A, cos B and cos C are the roots of the cubic equation
`x^(3)+ax^(2)+bx + c=0`
`rArr cos A+cos B + cos C = -a`
cos A cos B + cos B cos C + cos C cos A = b
cos A cos B cos C = -c
Now `(cos A+cos B cosC)^(2)=(Sigma cos^(2)A)+2(Sigma cos A cos B)`
`therefore cos^(2)A+cos^(2)B+cos^(2)C=a^(2)-2b`
`therefore 3+cos 2A+cos 2B+cos 2C=2a^(2)-4b`
`therefore 3-1-4 cos A cos B cos C = 2a^(2)-4b`
`thererfore 1+2c=a^(2)-2b`
`therefore a^(2)-2b-2c =1`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE|Exercise Solved Examples And Exercises|450 Videos

Similar Questions

Explore conceptually related problems

IF tan A and tan B are the roots of abx^2 - c^2 +ab =0 where a,b,c are the sides of the triangle ABC then the value of sin ^2 + sin ^2 B + sin ^2 C is

The equation 4ax^2 + 3bx + 2c = 0 where a, b, c are real and a+b+c = 0 has

If sinthetaa n d-costheta are the roots of the equation a x^2-b x-c=0 , where a , ba n dc are the sides of a triangle ABC, then cosB is equal to 1-c/(2a) (b) 1-c/a 1+c/(c a) (d) 1+c/(3a)

If sin alpha, cos alpha are the roots of the equation ax^2 + bx + c = 0 (c ne 0) , then prove that (a+c)^2 = b^2 + c^2 .

If the roots of ht cubic, x^3+a x^2+b x+c=0 are three consecutive positive integers, then the value of (a^2//b+1) is equal to __________.

If the roots of the cubic, x^2+a x^2+b x+c=0 are three consecutive positive integers, then the value of (a^2//b+1) is equal to __________.

Suppose a ,b ,c are the roots of the cubic x^3-x^2-2=0. Then the value of a^3+b^3+c^3 is _____.

If in triangle A B C ,Delta =a^2-(b-c)^2 , then find the value of tan(A/2).

If y = ax^(2)+bx + c = 0 where a,b,c are arbitrary constants then the differential equation is :