Home
Class 12
MATHS
In a triangle ABc , if r^2cot(A/2) cot(...

In a triangle ABc , if `r^2cot(A/2) cot(B/2) cot(C/2)=`

Text Solution

Verified by Experts

The correct Answer is:
D

In a `Delta ABC, cot.(A)/(2)cot.(B)/(2)cot.(C )/(2)ge 3 sqrt(3)`
So there is no triangle possible with with `cot.(A)/(2)cot.(B)/(2)cot.(C )/(2)=4`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE|Exercise Solved Examples And Exercises|450 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC if cot(A/2)cot(B/2)=c, cot(B/2)cot(C/2)=a and cot(C/2)cot(A/2)=b then 1/(s-a)+1/(s-b)+1/(s-c)=

In triangle ABC, if |[1,1,1], [cot (A/2), cot(B/2), cot(C/2)], [tan(B/2)+tan(C/2), tan(C/2)+ tan(A/2), tan(A/2)+ tan(B/2)]| then the triangle must be (A) Equilateral (B) Isoceless (C) Right Angle (D) none of these

In triangle ABC the value of ( cot A/2 cot ""B/2 -1)/( cot""A/2 cot""B/2) is

If x , ya n dz are the distances of incenter from the vertices of the triangle A B C , respectively, then prove that (a b c)/(x y z)=cot(A/2)cot(B/2)cot(C/2)

In Delta ABC, "cot"(A)/(2) + "cot" (B)/(2) + "cot" (C)/(2) is equal to

if ABC is a triangle and tan(A/2), tan(B/2), tan(C/2) are in H.P. Then find the minimum value of cot(B/2)

In a triangle ABC if 2Delta^(2)=(a^(2)b^(2)c^(2))/(a^(2)+b^(2)+c^(2)) , then it is

cot^(2) x + tan^(2) x

For any triangle ABC, prove that (b^2 c^2) cot"A"+"(c^2 a^2)"cot"B""+""(a^2 b^2)" cot"C" "="\ "0

If A+B+C= pi ,prove that cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)