Home
Class 12
MATHS
If A B C D is quadrilateral and Ea n dF ...

If `A B C D` is quadrilateral and `Ea n dF` are the mid-points of `A Ca n dB D` respectively, prove that ` vec A B+ vec A D` +` vec C B` +` vec C D` =4 ` vec E Fdot`

Text Solution

Verified by Experts

F is the middle point of BD. Therefore,
`" " vec(AB) + vec(AD) = 2 vec(AF)" "` (i)
Similarly, `vec(CB) + vec(CD) = 2 vec(CE)" "` (ii)
Adding (i) and (ii), we get
`vec(AB) + vec(AD) + vec(CB) + vec(CD)`
`" " = 2(vec(AF) + vec(CF) ) = -2( vec(FA) + vec(FC))`
`= -2(vec(FE))` (because E is the midpoint of AC )
`" " = 4 vec(EF)`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise 1.2|7 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Subjective)|14 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise All Questions|529 Videos

Similar Questions

Explore conceptually related problems

A B C D is a parallelogram. If La n dM are the mid-points of B Ca n dD C respectively, then express vec A La n d vec A M in terms of vec A Ba n d vec A D . Also, prove that vec A L+ vec A M=3/2 vec A Cdot

Let D ,Ea n dF be the middle points of the sides B C ,C Aa n dA B , respectively of a triangle A B Cdot Then prove that vec A D+ vec B E+ vec C F= vec0 .

A , B , C , D are any four points, prove that vec A B dot vec C D+ vec B Cdot vec A D+ vec C Adot vec B D=0.

A , B , Ca n dD are any four points in the space, then prove that | vec A Bxx vec C D+ vec B Cxx vec A D+ vec C Axx vec B D|=4 (area of A B C .)

In a quadrilateral A B C D , vec A C is the bisector of vec A Ba n d vec A D , angle between vec A Ba n d vec A D is 2pi//3 , 15| vec A C|=3| vec A B|=5| vec A D|dot Then the angle between vec B Aa n d vec C D is cos^(-1)(sqrt(14))/(7sqrt(2)) b. cos^(-1)(sqrt(21))/(7sqrt(3)) c. cos^(-1)2/(sqrt(7)) d. cos^(-1)(2sqrt(7))/(14)

The position vectors of the vertices A ,Ba n dC of a triangle are three unit vectors vec a , vec b ,a n d vec c , respectively. A vector vec d is such that vecd dot vec a= vecd dot vec b= vec d dot vec ca n d vec d=lambda( vec b+ vec c)dot Then triangle A B C is a. acute angled b. obtuse angled c. right angled d. none of these

The position vectors of the vertices A ,Ba n dC of a triangle are three unit vectors vec a , vec b ,a n d vec c , respectively. A vector vec d is such that vecd dot vec a= vecd dot vec b= vec d dot vec ca n d vec d=lambda( vec b+ vec c)dot Then triangle A B C is a. acute angled b. obtuse angled c. right angled d. none of these

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n (a) vec a . vec b+ vec b . vec c+ vec c . vec a=0 (b) vec axx vec b= vec bxx vec c= vec cxx vec a (c) vec adot vec b= vec bdot vec c= vec c dot vec a (d) vec axx vec b+ vec bxx vec c+ vec cxx vec a=0

A straight line L cuts the lines A B ,A Ca n dA D of a parallelogram A B C D at points B_1, C_1a n dD_1, respectively. If ( vec A B)_1,lambda_1 vec A B ,( vec A D)_1=lambda_2 vec A Da n d( vec A C)_1=lambda_3 vec A C , then prove that 1/(lambda_3)=1/(lambda_1)+1/(lambda_2) .

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

CENGAGE-INTRODUCTION TO VECTORS -Exercise 1.1
  1. Find the unit vector in the direction of the vector veca=hati+hatj+2h...

    Text Solution

    |

  2. Find the direction cosines of the vector hati+2hatj+3hatk.

    Text Solution

    |

  3. Find the direction cosines of the vector joining the points A(1, 2,3) ...

    Text Solution

    |

  4. The position vectors of Pa n dQ are 5 hat i+4 hat j+a hat k and - hat ...

    Text Solution

    |

  5. Given three points are A(-3,-2,0),B(3,-3,1)a n dC(5,0,2)dot Then find ...

    Text Solution

    |

  6. Find a vector of magnitude 5 units and parallel to the resultant of th...

    Text Solution

    |

  7. Show that the points A(1, -2, -8) B (5, 0, -2) and C(11, 3, 7) are col...

    Text Solution

    |

  8. If A B C D is a rhombus whose diagonals cut at the origin O , then ...

    Text Solution

    |

  9. Let D ,Ea n dF be the middle points of the sides B C ,C Aa n dA B , re...

    Text Solution

    |

  10. Let A B C D be a p[arallelogram whose diagonals intersect at P and ...

    Text Solution

    |

  11. If A B C D is quadrilateral and Ea n dF are the mid-points of A Ca n d...

    Text Solution

    |

  12. If vec A O+ vec O B= vec B O+ vec O C , then A ,Bn a dC are (where O ...

    Text Solution

    |

  13. If the sides of an angle are given by vectors veca=hati-2hatj+2hatk an...

    Text Solution

    |

  14. A B C D is a parallelogram. If La n dM are the mid-points of B Ca n dD...

    Text Solution

    |

  15. A B C D is a quadrilateral. E is the point of intersection of th...

    Text Solution

    |

  16. What is the unit vector parallel to vec a=3 hat i+4 hat j-2 hat k ...

    Text Solution

    |

  17. The position vectors of points Aa n dB w.r.t. the origin are vec a...

    Text Solution

    |

  18. If vec r1, vec r2, vec r3 are the position vectors off thee collinear...

    Text Solution

    |

  19. If veca and vecb are two vectors of magnitude 1 inclined at 120^(@), t...

    Text Solution

    |

  20. Find the vector of magnitude 3, bisecting the angle between the vector...

    Text Solution

    |