Home
Class 12
MATHS
If vec A O+ vec O B= vec B O+ vec O C ,...

If ` vec A O+ vec O B= vec B O+ vec O C` , then `A ,Bn a dC` are (where `O` is the origin) a. coplanar b. collinear c. non-collinear d. none of these

Text Solution

Verified by Experts

We have, `vec(AO) + vec(OB) = vec(BO ) + vec(OC)`
`rArr vec(AB) = vec(BC)`
Since the initial point of `vec(BC)` is the terminal point of `vec(AB), A, B and C` are collinear.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise 1.2|7 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Subjective)|14 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise All Questions|529 Videos

Similar Questions

Explore conceptually related problems

if vec Ao + vec O B = vec B O + vec O C ,than prove that B is the midpoint of AC.

If ( vec axx vec b)xx( vec bxx vec c)= vec b ,w h e r e vec a , vec b ,a n d vec c are nonzero vectors, then (a) vec a , vec b ,a n d vec c can be coplanar (b) vec a , vec b ,a n d vec c must be coplanar (c) vec a , vec b ,a n d vec c cannot be coplanar (d)none of these

Let vec O A- vec a , vec O B=10 vec a+2 vec ba n d vec O C= vec b ,w h e r eO ,Aa n dC are non-collinear points. Let p denotes the areaof quadrilateral O A C B , and let q denote the area of parallelogram with O Aa n dO C as adjacent sides. If p=k q , then find kdot

The position vectors of the vertices A ,Ba n dC of a triangle are three unit vectors vec a , vec b ,a n d vec c , respectively. A vector vec d is such that vecd dot vec a= vecd dot vec b= vec d dot vec ca n d vec d=lambda( vec b+ vec c)dot Then triangle A B C is a. acute angled b. obtuse angled c. right angled d. none of these

The position vectors of the vertices A ,Ba n dC of a triangle are three unit vectors vec a , vec b ,a n d vec c , respectively. A vector vec d is such that vecd dot vec a= vecd dot vec b= vec d dot vec ca n d vec d=lambda( vec b+ vec c)dot Then triangle A B C is a. acute angled b. obtuse angled c. right angled d. none of these

If vec r . vec a= vec r . vec b= vec rdot vec c=1/2 or some nonzero vector vec r , then the area of the triangle whose vertices are A( vec a),B( vec b)a n dC( vec c)i s( vec a , vec b , vec c are non-coplanar ) a. |[ vec a vec b vec c]| b. | vec r| c. |[ vec a vec b vec c] vec r| d. none of these

Let vec a , vec b ,a n d vec c be non-zero vectors and vec V_1= vec axx( vec bxx vec c)a n d vec V_2( vec axx vec b)xx vec cdot Vectors vec V_1a n d vec V_2 are equal. Then vec aa n vec b are orthogonal b. vec aa n d vec c are collinear c. vec ba n d vec c are orthogonal d. vec b=lambda( vec axx vec c)w h e nlambda is a scalar

If 4 vec a+5 vec b+9 vec c=0, then ( vec axx vec b)xx[( vec bxx vec c)xx( vec cxx vec a)] is equal to a. vector perpendicular to the plane of a ,b ,c b. a scalar quantity c. vec0 d. none of these

If 2 vec A C = 3 vec C B , then prove that 2 vec O A =3 vec C B then prove that 2 vec O A + 3 vec O B =5 vec O C where O is the origin.

If vec d= vec axx vec b+ vec bxx vec c+ vec cxx vec a is non-zero vector and |( vec d * vec c)( vec axx vec b)+( vec d* vec a)( vec bxx vec c)+( vec d*vec b)( vec cxx vec a)|=0, then a. | vec a|=| vec b|=| vec c| b. | vec a|+| vec b|+| vec c|=|d| c. vec a , vec b ,a n d vec c are coplanar d. none of these

CENGAGE-INTRODUCTION TO VECTORS -Exercise 1.1
  1. Find the unit vector in the direction of the vector veca=hati+hatj+2h...

    Text Solution

    |

  2. Find the direction cosines of the vector hati+2hatj+3hatk.

    Text Solution

    |

  3. Find the direction cosines of the vector joining the points A(1, 2,3) ...

    Text Solution

    |

  4. The position vectors of Pa n dQ are 5 hat i+4 hat j+a hat k and - hat ...

    Text Solution

    |

  5. Given three points are A(-3,-2,0),B(3,-3,1)a n dC(5,0,2)dot Then find ...

    Text Solution

    |

  6. Find a vector of magnitude 5 units and parallel to the resultant of th...

    Text Solution

    |

  7. Show that the points A(1, -2, -8) B (5, 0, -2) and C(11, 3, 7) are col...

    Text Solution

    |

  8. If A B C D is a rhombus whose diagonals cut at the origin O , then ...

    Text Solution

    |

  9. Let D ,Ea n dF be the middle points of the sides B C ,C Aa n dA B , re...

    Text Solution

    |

  10. Let A B C D be a p[arallelogram whose diagonals intersect at P and ...

    Text Solution

    |

  11. If A B C D is quadrilateral and Ea n dF are the mid-points of A Ca n d...

    Text Solution

    |

  12. If vec A O+ vec O B= vec B O+ vec O C , then A ,Bn a dC are (where O ...

    Text Solution

    |

  13. If the sides of an angle are given by vectors veca=hati-2hatj+2hatk an...

    Text Solution

    |

  14. A B C D is a parallelogram. If La n dM are the mid-points of B Ca n dD...

    Text Solution

    |

  15. A B C D is a quadrilateral. E is the point of intersection of th...

    Text Solution

    |

  16. What is the unit vector parallel to vec a=3 hat i+4 hat j-2 hat k ...

    Text Solution

    |

  17. The position vectors of points Aa n dB w.r.t. the origin are vec a...

    Text Solution

    |

  18. If vec r1, vec r2, vec r3 are the position vectors off thee collinear...

    Text Solution

    |

  19. If veca and vecb are two vectors of magnitude 1 inclined at 120^(@), t...

    Text Solution

    |

  20. Find the vector of magnitude 3, bisecting the angle between the vector...

    Text Solution

    |