Home
Class 12
MATHS
If vec r1, vec r2, vec r3 are the posit...

If ` vec r_1, vec r_2, vec r_3` are the position vectors off thee collinear points and scalar `pa n dq` exist such that ` vec r_3=p vec r_1+q vec r_2,` then show that `p+q=1.`

Text Solution

Verified by Experts

`vec(r_3)= p vec(r_1)+q (r_2)`
`" "=(pvec(r_1)+ (1-p)vec(r_2))/(p+ (1+p))`
`vec(r_3)` divides `vec(r_1)` in the ratios `(1-p): p`
Hence, `vec(r_1), vec(r_2) and vec(r_3)` are collinear.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise 1.2|7 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Subjective)|14 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise All Questions|529 Videos

Similar Questions

Explore conceptually related problems

If vec r_1, vec r_2, vec r_3 are the position vectors of the collinear points and scalar p a n d q exist such that vec r_3=p vec r_1+q vec r_2, then show that p+q=1.

P(vec p) and Q(vec q) are the position vectors of two fixed points and R(vec r) is the position vectorvariable point. If R moves such that (vec r-vec p)xx(vec r -vec q)=0 then the locus of R is

Let vec r_1, vec r_2, vec r_3, , vec r_n be the position vectors of points P_1,P_2, P_3 ,P_n relative to the origin Odot If the vector equation a_1 vec r_1+a_2 vec r_2++a_n vec r_n=0 hold, then a similar equation will also hold w.r.t. to any other origin provided a. a_1+a_2+dot+a_n=n b. a_1+a_2+dot+a_n=1 c. a_1+a_2+dot+a_n=0 d. a_1=a_2=a_3dot+a_n=0

If vec(PO) + vec(OQ) = vec(QO) + vec(OR) prove that the points P,Q,R are collinear .

If vec e_1, vec e_2, vec e_3a n d vec E_1, vec E_2, vec E_3 are two sets of vectors such that vec e_idot vec E_j=1,ifi=ja n d vec e_idot vec E_j=0a n difi!=j , then prove that [ vec e_1 vec e_2 vec e_3][ vec E_1 vec E_2 vec E_3]=1.

If vec a , vec ba n d vec c are three non-zero vectors, no two of which ar collinear, vec a+2 vec b is collinear with vec c and vec b+3 vec c is collinear with vec a , then find the value of | vec a+2 vec b+6 vec c|dot

Statement 1: Let vec a , vec b , vec ca n d vec d be the position vectors of four points A ,B ,Ca n dD and 3 vec a-2 vec b+5 vec c-6 vec d=0. Then points A ,B ,C ,a n dD are coplanar. Statement 2: Three non-zero, linearly dependent coinitial vector ( vec P Q , vec P Ra n d vec P S) are coplanar. Then vec P Q=lambda vec P R+mu vec P S ,w h e r elambdaa n dmu are scalars.

Statement 1: Let vec a , vec b , vec ca n d vec d be the position vectors of four points A ,B ,Ca n dD and 3 vec a-2 vec b+5 vec c-6 vec d=0. Then points A ,B ,C ,a n dD are coplanar. Statement 2: Three non-zero, linearly dependent coinitial vector ( vec P Q , vec P Ra n d vec P S) are coplanar. Then vec P Q=lambda vec P R+mu vec P S ,w h e r elambdaa n dmu are scalars.

If vec ra n d vec s are non-zero constant vectors and the scalar b is chosen such that | vec r+b vec s| is minimum, then the value of |b vec s|^2+| vec r+b vec s|^2 is equal to a. 2| vec r|^2 b. | vec r|^2//2 c. 3| vec r""|^2 d. |r|^2

If vec aa n d vec b are two given vectors and k is any scalar, then find the vector vec r satisfying vec rxx vec a+k vec r= vec bdot

CENGAGE-INTRODUCTION TO VECTORS -Exercise 1.1
  1. Find the unit vector in the direction of the vector veca=hati+hatj+2h...

    Text Solution

    |

  2. Find the direction cosines of the vector hati+2hatj+3hatk.

    Text Solution

    |

  3. Find the direction cosines of the vector joining the points A(1, 2,3) ...

    Text Solution

    |

  4. The position vectors of Pa n dQ are 5 hat i+4 hat j+a hat k and - hat ...

    Text Solution

    |

  5. Given three points are A(-3,-2,0),B(3,-3,1)a n dC(5,0,2)dot Then find ...

    Text Solution

    |

  6. Find a vector of magnitude 5 units and parallel to the resultant of th...

    Text Solution

    |

  7. Show that the points A(1, -2, -8) B (5, 0, -2) and C(11, 3, 7) are col...

    Text Solution

    |

  8. If A B C D is a rhombus whose diagonals cut at the origin O , then ...

    Text Solution

    |

  9. Let D ,Ea n dF be the middle points of the sides B C ,C Aa n dA B , re...

    Text Solution

    |

  10. Let A B C D be a p[arallelogram whose diagonals intersect at P and ...

    Text Solution

    |

  11. If A B C D is quadrilateral and Ea n dF are the mid-points of A Ca n d...

    Text Solution

    |

  12. If vec A O+ vec O B= vec B O+ vec O C , then A ,Bn a dC are (where O ...

    Text Solution

    |

  13. If the sides of an angle are given by vectors veca=hati-2hatj+2hatk an...

    Text Solution

    |

  14. A B C D is a parallelogram. If La n dM are the mid-points of B Ca n dD...

    Text Solution

    |

  15. A B C D is a quadrilateral. E is the point of intersection of th...

    Text Solution

    |

  16. What is the unit vector parallel to vec a=3 hat i+4 hat j-2 hat k ...

    Text Solution

    |

  17. The position vectors of points Aa n dB w.r.t. the origin are vec a...

    Text Solution

    |

  18. If vec r1, vec r2, vec r3 are the position vectors off thee collinear...

    Text Solution

    |

  19. If veca and vecb are two vectors of magnitude 1 inclined at 120^(@), t...

    Text Solution

    |

  20. Find the vector of magnitude 3, bisecting the angle between the vector...

    Text Solution

    |