Home
Class 12
MATHS
A straight line L cuts the lines A B ,A ...

A straight line `L` cuts the lines `A B ,A Ca n dA D` of a parallelogram `A B C D` at points `B_1, C_1a n dD_1,` respectively. If `( vec A B)_1,lambda_1 vec A B ,( vec A D)_1=lambda_2 vec A Da n d( vec A C)_1=lambda_3 vec A C ,` then prove that `1/(lambda_3)=1/(lambda_1)+1/(lambda_2)` .

Text Solution

Verified by Experts

Let `vec(AB) = veca, vec(AD) = vecb,` then `vec(AC) = veca+vecb`.
Given `vec(AB)_1 = lamda_1 veca, vec(AD)_1 = lamda_2 vecb, vec(AC)_1 = lamda_3 (veca+vecb) vec(B_1D_1) = vec(AD)_1 - vec(AB)_1= lamda_2 vecb-lamda_1veca`
Since vectors `vec(D_1C_1) and vec(B_1D_1)` are collinear, we have
`" "vec(D_1C_1)=kvec(B_1D_1)` for some `k in R`
`rArr " "vec(AC)_1 - vec(AD)_1= k vec(B_1D_1)`
`rArr " "lamda_3(veca+vecb) -lamda_2vecb=k(lamda_2 vecb-lamda_1veca)`

or `lamda_3 veca+ (lamda_3-lamda_2)vecb= klamda_2vecb - klamda_1veca`
Hence, `lamda_3=-klamda_1 and lamda_3-lamda_2=klamda_2`
`rArr k = -(lamda_3)/(lamda_1)= (lamda_3-lamda_2)/(lamda_2)`
or `" "lamda_1lamda_2= lamda_1lamda_3+lamda_2lamda_3`
or `" "(1)/(lamda_3)= (1)/(lamda_1) + (1)/(lamda_2)`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Single)|34 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Multiple)|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise 1.2|7 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise All Questions|529 Videos

Similar Questions

Explore conceptually related problems

A B C D parallelogram, and A_1a n dB_1 are the midpoints of sides B Ca n dC D , respectivley . If vec AA_1+ vec A B_1=lambda vec A C ,t h e nlambda is equal to a. 1/2 b. 1 c. 3/2 d. 2 e. 2/3

A B C D is a parallelogram. If La n dM are the mid-points of B Ca n dD C respectively, then express vec A La n d vec A M in terms of vec A Ba n d vec A D . Also, prove that vec A L+ vec A M=3/2 vec A Cdot

If A B C D is quadrilateral and Ea n dF are the mid-points of A Ca n dB D respectively, prove that vec A B+ vec A D + vec C B + vec C D =4 vec E Fdot

If |vec a| = 3, | vec b| = 4 , then the value of lambda for which vec a + lambda vec b is perpendicular to vec a = lambda vec b is

If D,E and F are the mid-points of the sides BC, CA and AB respectively of a triangle ABC and lambda is scalar, such that vec(AD) + 2/3vec(BE)+1/3vec(CF)=lambdavec(AC) , then lambda is equal to

Let D ,Ea n dF be the middle points of the sides B C ,C Aa n dA B , respectively of a triangle A B Cdot Then prove that vec A D+ vec B E+ vec C F= vec0 .

The position vectors of the vertices A ,Ba n dC of a triangle are three unit vectors vec a , vec b ,a n d vec c , respectively. A vector vec d is such that vecd dot vec a= vecd dot vec b= vec d dot vec ca n d vec d=lambda( vec b+ vec c)dot Then triangle A B C is a. acute angled b. obtuse angled c. right angled d. none of these

The position vectors of the vertices A ,Ba n dC of a triangle are three unit vectors vec a , vec b ,a n d vec c , respectively. A vector vec d is such that vecd dot vec a= vecd dot vec b= vec d dot vec ca n d vec d=lambda( vec b+ vec c)dot Then triangle A B C is a. acute angled b. obtuse angled c. right angled d. none of these

A , B , C , D are any four points, prove that vec A B dot vec C D+ vec B Cdot vec A D+ vec C Adot vec B D=0.

A , B , Ca n dD are any four points in the space, then prove that | vec A Bxx vec C D+ vec B Cxx vec A D+ vec C Axx vec B D|=4 (area of A B C .)