Home
Class 12
MATHS
Sow that x1 hat i+y1 hat j+z1 hat k ,x2 ...

Sow that `x_1 hat i+y_1 hat j+z_1 hat k ,x_2 hat i+y_2 hat j+z_2 hat k ,a n dx_3 hat i+y_3 hat j+z_3 hat k ,` are non-coplanar if `|x_1|>|y_1|+|z_1|,|y_2|>|x_2|+|z_2|a n d|z_3|>|x_3|+|y_3|` .

Text Solution

Verified by Experts

If the given vectors are coplanar, then
`" "|{:(x_1,,y_1,,z_1),(x_2,,y_2,,z_2), (x_3,,y_3,,z_3):}|=0`
or the set of equations
`" "x_1x+y_1y+ z_1z=0`,
and `x_2x+y_2y+z_2z=0`
`" "x_3x+y_3y +z_3z=0` has a non-trivial solution.
Let the given set has a non-trival solution x, y, z without the loss of generality, we can assume that `x ge y ge z`.
For the given equation `x_1x+ y_1y+ z_1z=0`, we have `x_1x= -y_1y- z_1z`. Therefore,
`" "|x_1x|= |y_1y+ z_1z|le |y_1y|+ |z_1z|`
`rArr " "|x_1x| le |y_1x|+ |z_1x|`
`rArr " "|x_1| le |y_1|+ |z_1|`,
which is a contraction to the given inequility, i.e.,
`" "|x_1| gt |y_1|+ |z_1|`,
Similarly, the other inequalities rule out the possibility of a non-trival solution.
Hence, the given equation has only a trival solution.
Hence, the given vectors are non-coplanar.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Single)|34 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Multiple)|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise 1.2|7 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise All Questions|529 Videos

Similar Questions

Explore conceptually related problems

If 3 hat i + 6 hat j + 2 hat k , hat i - 2 hat j + 3 hat k and 5 hat i + 2 hat j + m hat k are coplanar.

Find lambda if the vectors hat i - hat j + hat k , 3 hat i + hat j + 2 hat k and hat i + lambda hat j - 3 hat k are coplanar.

Show that the vectors 2 hat i - 3 hat j + hat k , - 4hati - hat j + 3 hat k and -2 hat i - 4hatj + 4 hat k are coplanar.

Prove that point hat i +2 hat j - 3 hat k ,2 hat i - hat j + hat k and 2 hat i + 5 hat j - hat k from a triangle in space.

Show that the points A(-2 hat i + 3 hat j + 5 hat k) , B( hat i + 2 hat j + 3 hat k ) and C( 7 hat i - hat k ) are collinear.

Show that the vectors vec a = hat i-2 hat j+3 hat k and vec b=-2 hat i+3 hat j -4 hat k and vec c = hat i -3 hat j +5 hat k are coplanar

For what values of x, y and z the vectors 3 hat i - y hat j + 8 hat k and x hat i + 7 hat j + z hat k are equal?

Show that the vectors vec a = hat i - 2 hat j + 3 hat k , vec b = -2 hat i +3hat j - 4 hat k and vec c = hat i - 3 hat j + 5 hat k are coplanar.

Show that the vectors vec a = hat i - 2 hat j + 3 hat k, vec b = -2 hat i + 3 hat j - 4 hat k and vec c = hat i - 3 hat j + 5 hat k are coplanar.

Find the angle between the vectors hat i - 2 hat j + 3 hat k and 3 hat i - 2 hat j + hat k .