Home
Class 12
MATHS
If vec An d vec B are two vectors and k...

If ` vec An d vec B` are two vectors and `k` any scalar quantity greater than zero, then prove that `| vec A+ vec B|^2lt=(1+k)| vec A|^2+(1+1/k)| vec B|^2dot`

Text Solution

Verified by Experts

We know :
`" "(1+k) |vecA|^(2) + (1+(1)/(k))|vecB|^(2)`
`" "=|vecA|^(2) + k|vecA|^(2)+ |vecB|^(2)+ (1)/(k)|vecB|^(2)" "`(i)
Also,
`" "k|vecA|^(2) + (1)/(k)|vecB|^(2) ge 2(k+ |vecA|^(2) *(1)/(k)|vecB|^(2))^(1//2)`
`" "=2|vecA|*|vecB|" "`(ii)
(Since arithmetic mean `ge` geometric mean)
`therefore " "(1+k)|vecA|^(2) + (1+(1)/(k))|vecB|^(2) ge |vecA|^(2) + |vecB|^(2) + 2|vecA|*|vecB|= (|vecA|+|vecB|)^(2)` [Using (i) and (ii)]
And also `|vecA|+ |vecB| ge |vecA+ vecB|`
Hence,`(1+k)|vecA|^(2) +(1+ (1)/(k))^(2) |vecB|^(2) ge |vecA+vecB|^(2)`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Single)|34 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Multiple)|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise 1.2|7 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise All Questions|529 Videos

Similar Questions

Explore conceptually related problems

If vec a and vec b are two vectors such that vec a + vec b is perpendicular to vec a - vec b ,then prove that |vec a| = |vec b| .

If vec aa n d vec b are two given vectors and k is any scalar, then find the vector vec r satisfying vec rxx vec a+k vec r= vec bdot

If vec aa n d vec b are two vectors and angle between them is theta, then | vec axx vec b|^2+( vec adot vec b)^2=| vec a|^2| vec b|^2 | vec axx vec b|=( vec adot vec b),iftheta=pi//4 vec axx vec b=( vec adot vec b) hat n ,(w h e r e hat n is unit vector, ) if theta=pi//4 ( vec axx vec b)dot( vec a+ vec b)=0

If vec a and vec b are two vectors such that | vec axx vec b|=2, then find the value of [ vec a vec b vec axx vec b].

For any vectors vec a vec b , show that |vec a + vec b| le |vec a| + |vec b| .

If vec a and vec b are orthogonal vectors, prove that (vec a + vec b)^(2) = (vec a - vec b)^(2) .

For any three vectors veca, vec b, vec c prove that (vec a + vec b)+ vec c = vec a + (vec b + vec c)

Show that ( vec a- vec b)xx( vec a+ vec b)=2( vec axx vec b)dot

If vec aa n d vec b are two vectors, then prove that ( vec axx vec b)^2=| vec adot vec a vec adot vec b vec bdot vec a vec bdot vec b| .

If vec a , a n d vec b are unit vectors , then find the greatest value of | vec a+ vec b|+| vec a- vec b|dot