Home
Class 12
MATHS
Consider the vectors hat i+cos(beta-alp...

Consider the vectors ` hat i+cos(beta-alpha) hat j+cos(gamma-alpha) hat k ,cos(alpha-beta) hat i+ hat j+"cos"(gamma-beta) hat ka n dcos(alpha-gamma) hat i+cos(beta-gamma) hat k+a hat k ,w h e r ealpha,beta,a n dgamma` are different angles. If these vectors are coplanar, show that `a` is independent of `alpha,beta,a n dgammadot`

Text Solution

Verified by Experts

Since the vectors are coplanar, we have
`" "|{:(1,,cos(beta-alpha),,cos(gamma-alpha)),(cos(alpha-beta),,1,,cos(gamma-beta)),(cos(alpha-gamma),,cos(beta-gamma),,a):}|`
`" "|{:(cosalpha,,sinalpha,,0),(cosbeta,,sinbeta,,0),(cosgamma,,singamma,,a-1):}||{:(cosalpha,,sinalpha,,0),(cosbeta,, sinbeta,,0),(cosgamma,,singamma,,1):}|=0`
`rArr a=1`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Single)|34 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Multiple)|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise 1.2|7 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise All Questions|529 Videos

Similar Questions

Explore conceptually related problems

Consider the vectors hat i+cos(beta-alpha) hat j+cos(gamma-alpha) hat k ,cos(alpha-beta) hat i+ hat j+"cos"(gamma-beta) hat ka n dcos(alpha-gamma) hat i+cos(beta-gamma) hat k+a hat k where alpha,beta , and gamma are different angles. If these vectors are coplanar, show that a is independent of alpha,beta and gamma

Prove that : cos^2 (beta-gamma) + cos^2 (gamma-alpha) + cos^2 (alpha-beta) =1+2cos (beta-gamma) cos (gamma-alpha) cos (alpha-beta) .

If cos (alpha - beta) + cos (beta - gamma) + cos (gamma - alpha) = (-3)/(2) then prove that cos alpha + cos beta+ cos gamma = sin alpha + sin beta + sin gamma = 0 .

If cos alpha + cos beta + cos gamma = sin alpha + sin beta + sin gamma = 0 , show that cos 3alpha + cos 3 beta + cos gamma = 3 cos (alpha + beta + gamma) and

If the vectors vecalpha=a hat i+a hat j+c hat k , vecbeta= hat i+ hat ka n d vecgamma=c hat i+c hat j+b hat k are coplanar, then prove that c is the geometric mean of aa n dbdot

Find the projection of the vector hat i + 3 hat j + 7 hat k on the vector 7 hat i - hat j + 8 hat k .

Find angle theta between the vectors vec a = hat i + hat j - hat k and vec b = hat i - hat j + hat k .

Find lambda if the vectors 5 hat i + 2 hat j - hat k and lambda hat i - hat j + 5 hat k are orthogonal.

Find lambda if the vectors hat i - hat j + hat k , 3 hat i + hat j + 2 hat k and hat i + lambda hat j - 3 hat k are coplanar.

Show that the vectors 2 hat i - 3 hat j + hat k , - 4hati - hat j + 3 hat k and -2 hat i - 4hatj + 4 hat k are coplanar.