Home
Class 12
MATHS
Let G be the centroid of the DeltaABC, w...

Let G be the centroid of the `DeltaABC`, whose sides are of lengths a,b,c. If P be a point in the plane of `triangleABC`, such that `PA=1,PB=3, PC=4` and `PG=2`, then the value of `a^(2)+b^(2)+c^(2)` is

A

42

B

40

C

36

D

28

Text Solution

Verified by Experts

The correct Answer is:
A

As `|veca+vecb+vecc|^(2)+ |veca-vecb|^(2)+|vecb-vecc|^(2)+|vecc-veca|^(2)`
`=3(|veca|^(2)+|vecb|^(2)+|vecc|^(2))`
So, `9(GP)^(2)+(AB)^(2)+(BC)^(2)+(CA)^(2)`
`=3(PA)^(2)+(PB)^(2)+(PC)^(2)`
`rArr 9 xx 2^(2)(a^(2)+b^(2)+c^(2))=3(1^(2)+3^(2)+4^(2))`
`rArr a^(2)+b^(2)+c^(2)=42`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos
  • ELLIPSE

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

In DeltaABC , if r = 1, R = 3, and s = 5 , then the value of a^(2) + b^(2) + c^(2) is _____

In a tetrahedron OABC, the edges are of lengths, |OA|=|BC|=a,|OB|=|AC|=b,|OC|=|AB|=c. Let G_1 and G_2 be the centroids of the triangle ABC and AOC such that OG_1 _|_ BG_2, then the value of (a^2+c^2)/b^2 is

Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

In DeltaABC, a = 3, b = 4 and c = 5 , then value of sinA + sin2B + sin3C is

If A (veca).B(vecb) and C(vecc) are three non-collinear point and origin does not lie in the plane of the points A, B and C, then for any point P(vecP) in the plane of the triangleABC such that vector vec(OP) is bot to plane of trianglABC , show that vec(OP)=([vecavecbvecc] (vecaxxvecb+vecbxxvecc+veccxxveca))/(4Delta^(2))

Let ABC is be a fixed triangle and P be veriable point in the plane of triangle ABC. Suppose a,b,c are lengths of sides BC,CA,AB opposite to angles A,B,C, respectively. If a(PA)^(2) +b(PB)^(2)+c(PC)^(2) is minimum, then point P with respect to DeltaABC is

AD, BE and CF are the medians of triangle ABC whose centroid is G. If the points A, F, G and E are concyclic, then prove that 2a^(2) = b^(2) + c^(2)

If the origin is the centroid of the triangle PQR with vertices P(2a,2,6),Q(-4,3b,-10) and R(8,14,2c) , then find the values of a, b and c.